2023年安徽省合肥蜀山区七校联考数学九年级第一学期期末复习检测模拟试题含解析_第1页
2023年安徽省合肥蜀山区七校联考数学九年级第一学期期末复习检测模拟试题含解析_第2页
2023年安徽省合肥蜀山区七校联考数学九年级第一学期期末复习检测模拟试题含解析_第3页
2023年安徽省合肥蜀山区七校联考数学九年级第一学期期末复习检测模拟试题含解析_第4页
2023年安徽省合肥蜀山区七校联考数学九年级第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年安徽省合肥蜀山区七校联考数学九年级第一学期期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,滑雪场有一坡角α为20°的滑雪道,滑雪道AC的长为200米,则滑雪道的坡顶到坡底垂直高度AB的长为()A.200tan20°米 B.米 C.200sin20°米 D.200cos20°米2.下列成语中描述的事件必然发生的是()A.水中捞月 B.日出东方 C.守株待兔 D.拔苗助长3.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点,.若反比例函数经过点C,则k的值等于()A.10 B.24 C.48 D.504.抛物线y=-x2+3x-5与坐标轴的交点的个数是()A.0个 B.1个 C.2个 D.3个5.下列图形中,可以看作是中心对称图形的是()A. B.C. D.6.如图,⊙O的弦AB=16,OM⊥AB于M,且OM=6,则⊙O的半径等于A.8 B.6 C.10 D.207.在△ABC中,点D、E分别在AB,AC上,DE∥BC,AD:DB=1:2,,则=(),A. B. C. D.8.抛物线的顶点坐标是()A. B. C. D.9.一元二次方程2x2+3x+5=0的根的情况为()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根10.向阳村年的人均收入为万元,年的人均收入为万元.设年平均增长率为,根据题意,可列出方程为()A. B. C. D.11.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4 C.6 D.412.下列四幅图案,在设计中用到了中心对称的图形是()A. B. C. D.二、填空题(每题4分,共24分)13.高为8米的旗杆在水平地面上的影子长为6米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为_____米.14.如图,一段抛物线记为,它与轴交于两点、,将绕旋转得到,交轴于,将绕旋转得到,交轴于;如此进行下去,直至得到,若点在第8段抛物线上,则等于__________15.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为________

m2.16.已知扇形的圆心角为120°,弧长为6π,则它的半径为________.17.如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.18.请写出“两个根分别是2,-2”的一个一元二次方程:_______________三、解答题(共78分)19.(8分)如图,已知抛物线与轴相交于、两点,与轴相交于点,对称轴为,直线与抛物线相交于、两点.(1)求此抛物线的解析式;(2)为抛物线上一动点,且位于的下方,求出面积的最大值及此时点的坐标;(3)设点在轴上,且满足,求的长.20.(8分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点A.求作:直线AD,使得AD∥l.作法:如图2,①在直线l上任取一点B,连接AB;②以点B为圆心,AB长为半径画弧,交直线l于点C;③分别以点A,C为圆心,AB长为半径画弧,两弧交于点D(不与点B重合);④作直线AD.所以直线AD就是所求作的直线.根据小东设计的尺规作图过程,完成下面的证明.(说明:括号里填推理的依据)证明:连接CD.∵AD=CD=__________=__________,∴四边形ABCD是().∴AD∥l().21.(8分)某水果商场经销一种高档水果,原价每千克25元,连续两次涨价后每千克水果现在的价格为36元.(1)若每次涨价的百分率相同.求每次涨价的百分率;(2)若进价不变,按现价售出,每千克可获利15元,但该水果出现滞销,商场决定降价m元出售,同时把降价的幅度m控制在的范围,经市场调查发现,每天销售量(千克)与降价的幅度m(元)成正比例,且当时,.求与m的函数解析式;(3)在(2)的条件下,若商场每天销售该水果盈利元,为确保每天盈利最大,该水果每千克应降价多少元?22.(10分)矩形中,线段绕矩形外一点顺时针旋转,旋转角为,使点的对应点落在射线上,点的对应点在的延长线上.(1)如图1,连接、、、,则与的大小关系为______________.(2)如图2,当点位于线段上时,求证:;(3)如图3,当点位于线段的延长线上时,,,求四边形的面积.23.(10分)如图,在中,,的平分线交于,为上一点,,以为圆心,以的长为半径画圆.(1)求证:是⊙的切线;(2)求证:.24.(10分)如图,在矩形ABCD中,AB=2,E为BC上一点,且BE=1,∠AED=90°,将AED绕点E顺时针旋转得到,A′E交AD于P,D′E交CD于Q,连接PQ,当点Q与点C重合时,AED停止转动.(1)求线段AD的长;(2)当点P与点A不重合时,试判断PQ与的位置关系,并说明理由;(3)求出从开始到停止,线段PQ的中点M所经过的路径长.25.(12分)如图,已知一次函数的图象与反比例函数的图象交于点,与轴交于点,连接,点为轴上一点,,连接.(1)求反比例函数与一次函数的解析式;(2)求的面积.26.已知,如图,在平面直角坐标系中,直线与轴交于点A,与轴交于点B,抛物线经过A、B两点,与轴的另一个交点为C.(1)直接写出点A和点B的坐标;(2)求抛物线的函数解析式;(3)D为直线AB下方抛物线上一动点;①连接DO交AB于点E,若DE:OE=3:4,求点D的坐标;②是否存在点D,使得∠DBA的度数恰好是∠BAC度数2倍,如果存在,求点D的坐标,如果不存在,说明理由.

参考答案一、选择题(每题4分,共48分)1、C【解析】解:∵sin∠C=,∴AB=AC•sin∠C=200sin20°.故选C.2、B【分析】根据事件发生的可能性大小判断.【详解】解:A、水中捞月,是不可能事件;B、日出东方,是必然事件;C、守株待兔,是随机事件;D、拔苗助长,是不可能事件;故选B.【点睛】本题主要考查随机事件和必然事件的概念,解决本题的关键是要熟练掌握随机事件和必然事件的概念.3、C【分析】由菱形的性质和锐角三角函数可求点,将点C坐标代入解析式可求k的值.【详解】解:如图,过点C作于点E,∵菱形OABC的边OA在x轴上,点,∴,∵.∴,∴∴点C坐标∵若反比例函数经过点C,∴故选C.【点睛】本题考查了反比例函数性质,反比例函数图象上点的坐标特征,菱形的性质,锐角三角函数,关键是求出点C坐标.4、B【分析】根据△=b2-4ac与0的大小关系即可判断出二次函数y=-x2+3x-5的图象与x轴交点的个数再加上和y轴的一个交点即可【详解】解:对于抛物线y=-x2+3x-5,

∵△=9-20=-11<0,

∴抛物线与x轴没有交点,与y轴有一个交点,

∴抛物线y=-x2+3x-5与坐标轴交点个数为1个,故选:B.【点睛】本题考查抛物线与x轴的交点,解题的关键是记住:△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.5、B【解析】根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,直接判断即可.【详解】解:.不是中心对称图形;.是中心对称图形;.不是中心对称图形;.不是中心对称图形.故选:.【点睛】本题考查的知识点是中心对称图形的判定,这里需要注意与轴对称图形的区别,轴对称形是:一定要沿某直线折叠后直线两旁的部分互相重合;中心对称图形是:图形绕某一点旋转180°后与原来的图形重合.6、C【分析】连接OA,即可证得△OMA是直角三角形,根据垂径定理即可求得AM,根据勾股定理即可求得OA的长,即⊙O的半径.【详解】连接OA,∵M是AB的中点,∴OM⊥AB,且AM=8,在Rt△OAM中,OA===1.故选C.【点睛】本题主要考查了垂径定理,以及勾股定理,根据垂径定理求得AM的长,证明△OAM是直角三角形是解题的关键.7、A【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:1.【详解】解:如图:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:1.故选:A.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.8、A【分析】根据二次函数的性质,利用顶点式即可得出顶点坐标.【详解】解:∵抛物线,

∴抛物线的顶点坐标是:(1,3),

故选:A.【点睛】本题主要考查了利用二次函数顶点式求顶点坐标.能根据二次函数的顶点式找出抛物线的对称轴及顶点坐标是解题的关键.9、D【分析】根据根的判别式即可求出答案.【详解】由题意可知:△=9﹣4×2×5=﹣31<0,故选:D.【点睛】本题考查的是一元二次方程系数与根的关系,当时,有两个不相等的实数根;当时,有两个相等的实数根;当时,没有实数根.10、A【分析】设年平均增长率为,根据:2017年的人均收入×1+增长率=年的人均收入,列出方程即可.【详解】设设年平均增长率为,根据题意,得:,故选:A.【点睛】本题主要考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.11、B【分析】由已知条件可得,可得出,可求出AC的长.【详解】解:由题意得:∠B=∠DAC,∠ACB=∠ACD,所以,根据“相似三角形对应边成比例”,得,又AD是中线,BC=8,得DC=4,代入可得AC=,故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.12、D【解析】由题意根据中心对称图形的性质即图形旋转180°与原图形能够完全重合的图形是中心对称图形,依次对选项进行判断即可.【详解】解:A.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;B.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;C.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;D.旋转180°,能与原图形能够完全重合是中心对称图形;故此选项正确;故选:D.【点睛】本题主要考查中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键.二、填空题(每题4分,共24分)13、40【分析】根据投影的实际应用,在同一时刻太阳光线平行,不同物体的实际高度与影长之比相等建立方程,可求出答案.【详解】解:设建筑物的的高为x米,可得方程:,解得:=40答:此建筑物的高度为40米.故答案是:40.【点睛】本题主要考察投影中的实际应用,正确理解相似三角形在平行投影中的应用是解题的关键.14、【分析】求出抛物线与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方、第偶数号抛物线都在x轴下方,再根据向右平移横坐标相加表示出抛物线的解析式,然后把点P的横坐标代入计算即可.【详解】抛物线与x轴的交点为(0,0)、(2,0),将绕旋转180°得到,则的解析式为,同理可得的解析式为,的解析式为的解析式为的解析式为的解析式为的解析式为∵点在抛物线上,∴故答案为【点睛】本题考查的是二次函数的图像性质与平移,能够根据题意确定出的解析式是解题的关键.15、75【解析】试题分析:首先设垂直于墙面的长度为x,则根据题意可得:平行于墙面的长度为(30-3x),则S=x(30-3x)=-3+75,,则当x=5时,y有最大值,最大值为75,即饲养室的最大面积为75平方米.考点:一元二次方程的应用.16、1【分析】根据弧长公式L=求解即可.【详解】∵L=,∴R==1.故答案为1.【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L=.17、.【解析】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△PAB是等边三角形,∴∠PAH=60°.∴根据锐角三角函数,得AH=.∴OB=3+∴S△POB=OB•PH=.18、【分析】可先分别写出解为2,-2的一元一次方程(此一元一次方程的等式右边为0),然后逆运用因式分解法即可.【详解】解:因为x+2=0的解为x=-2,x-2=0的解为x=2,所以的两个根分别是2,-2,可化为.故答案为:.【点睛】本题考查一元二次方程的解,因式分解法解一元二次方程.因式分解法是令等式的一边为0,另一边分解为两个一次因式乘积的形式,这两个一次因式为0时的解为一元二次方程的两个解.而本题可先分别写出两个值为0时解为2和-2的一次因式,这两个一次因式的乘积即可作为一元二次方程等式的一边,等式的另外一边为0.三、解答题(共78分)19、(1);(2)当时,取最大值,此时点坐标为.(3)或17.【分析】(1)根据对称轴与点A代入即可求解;(2)先求出,过点作轴的平行线,交直线于点,设,得到,,表示出,根据二次函数的性质即可求解;(3)根据题意分①当在轴正半轴上时,②当在轴负半轴上时利用相似三角形的性质即可求解.【详解】(1)∵对称轴为x=−1,∴−=−1,∴b=2a,∴y=ax2+2ax−5,∵y=−x+3与x轴交于点A(3,0),将点A代入y=ax2+2ax−5可得a=∴.(2)令,解得:,,∴,过点作轴的平行线,交直线于点,设,则,∴,,则,∵,∴当时,取最大值,此时点坐标为.(3)存在,理由:①当在轴正半轴上时,如图,过点作于,根据三角形的外角的性质得,,又∵,∴,∴,∵,,∴,设,则,又∵,,∴,∴,∴,∴,②当在轴负半轴上时,记作,由①知,,取,如图,则由对称知:,∴,因此点也满足题目条件,∴,综合以上得:或17.【点睛】本题考查二次函数的综合;熟练掌握二次与一次函数的图象及性质,掌握三角形相似、直角三角形的性质是解题的关键.20、BC=AB,菱形(四边相等的四边形是菱形),菱形的对边平行.【解析】由菱形的判定及其性质求解可得.【详解】证明:连接CD.∵AD=CD=BC=AB,∴四边形ABCD是菱形(四条边都相等的四边形是菱形).∴AD∥l(菱形的对边平行)【点睛】此题考查菱形的判定,掌握判定定理是解题关键.21、(1)20%;(2)(3)商场为了每天盈利最大,每千克应降价7元【分析】(1)设每次涨价的百分率为x,根据题意列出方程即可;(2)根据题意列出函数表达式即可;(3)根据等量关系列出函数解析式,然后根据解析式的性质,求出最值即可.【详解】解:(1)设每次涨价的百分率为x,根据题意得:25(1+x)2=36,解得:(不合题意舍去)答:每次涨价的百分率20%;(2)设,把,代入得,∴k=30,∴y与m的函数解析式为;(3)依题有,∵抛物线的开口向下,对称轴为,∴当时,w随m的增大而增大,又,∴当时,每天盈利最大,答:商场为了每天盈利最大,每千克应降价7元.【点睛】本题主要考查了一元二次方程的应用,二次函数的应用,根据题意得出等量关系是解题关键.22、(1)相等;(2)见解析;(3)【分析】(1)由旋转得:旋转角相等,可得结论;

(2)证明△AOB≌△EOF(SAS),得∠OAB=∠OEF,根据平角的定义可得结论;

(3)如解图,根据等腰三角形的性质得:∠OFB=∠OBF=30°,∠OAE=∠AEO=30°,根据30度角的直角三角形的性质分别求得OB、OG、BF,勾股定理求得BE的长,再根据三角形面积公式即可求得结论.【详解】(1)由旋转得:∠AOE=∠BOF=,

故答案为:相等;(2)∵,∴,在△AOB和△EOF中,∴△AOB≌△EOF(SAS),∴,∵OA=OE,∴,∴;(3)如图,过点O作,垂足为G,根据旋转的性质知:∠BOF=120°,∠AOB=∠EOF,OB=OF,△BOF中,∠OFB=∠OBF=30°,

∴∠ABO=60°,

△AOE中,∠AOE=120°,OA=OE,

∴∠OAE=∠AEO=30°,

∴∠AOB=90°,

在△AOB和△EOF中,∴△AOB≌△EOF(SAS),∴,在中,∠AOB=90°,,∠OAB=30°,∴,在中,∠OGB=90°,,∠OBG=30°,∴,,∴,在中,∠EBF=90°,,,∴,∴.【点睛】本题是四边形的综合题,题目考查了几何图形的旋转变换,四边形的面积,直角三角形30度角的性质等知识,解决此类问题的关键分析图形的旋转情况,在旋转过程中,旋转角相等,对应线段相等.23、(1)证明见解析;(2)证明见解析.【分析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线;(2)先证明△BDE≌△FCD(HL),根据全等三角形对应边相等及切线的性质的AB=AF,得出AB+EB=AC.【详解】证明:(1)过点作于;∵,以为圆心,以的长为半径画圆,∴AB为圆D的切线又∵,且AD平分∠BAC,且DF⊥AC,是⊙的切线.(2)由,DB是半径得AB的是⊙O的切线,又由(1)可知是⊙的切线∵,∴即.【点睛】本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;及全等三角形的判断,全等三角形的对应边相等.24、(1)5;(2)∥,理由见解析;(3)【分析】(1)求出AE=,证明△ABE∽△DEA,由可求出AD的长;(2)过点E作EF⊥AD于点F,证明△PEF∽△QEC,再证△EPQ∽△A'ED',可得出∠EPQ=∠EA'D',则结论得证;(3)由(2)知PQ∥A′D′,取A′D′的中点N,可得出∠PEM为定值,则点M的运动路径为线段,即从AD的中点到DE的中点,由中位线定理可得出答案.【详解】解:(1)∵AB=2,BE=1,∠B=90°,∴AE===,∵∠AED=90°,∴∠EAD+∠ADE=90°,∵矩形ABCD中,∠ABC=∠BAD=90°,∴∠BAE+∠EAD=90°,∴∠BAE=∠ADE,∴△ABE∽△DEA,∴,∴,∴AD=5;(2)PQ∥A′D′,理由如下:∵,∠AED=90°∴==2,∵AD=BC=5,∴EC=BC﹣BE=5﹣1=4,过点E作EF⊥AD于点F,则∠FEC=90°,∵∠A'ED'=∠AED=90°,∴∠PEF=∠CEQ,∵∠C=∠PFE=90°,∴△PEF∽△QEC,∴,∵,∴,∴PQ∥A′D′;(3)连接EM,作MN⊥AE于N,由(2)知PQ∥A′D′,∴∠EPQ=∠A′=∠EAP,又∵△PEQ为直角三角形,M为PQ中点,∴PM=ME,∴∠EPQ=∠PEM,∵∠EPF=∠EAP+∠AEA′,∠NEM=∠PEM+∠AEA′∴∠EPF=∠NEM,又∵∠PFE=∠ENM﹣90°,∴△PEF∽△EMN,∴=为定值,又∵EF=AB=2,∴MN为定值,即M的轨迹为平行于AE的线段,∵M初始位置为AD中点,停止位置为DE中点,∴M的轨迹为△ADE的中位线,∴线段PQ的中点M所经过的路径长==.【点睛】本题考查了矩形的性质,相似三角形的判定与性质,勾股定理,平行线的判定,中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.25、(1)y1=x+1,;(2)14【分析】(1)将分别代入两个函数解析式得到方程组,解方程组后即可得出函数解析式;(2)根据勾股定理得出OD=OA=5,根据题意得出,OC=1,CD=4;最后根据S△ABD=S△DCB+S△DCA即可得出答案.【详解】解:(1)由题意得,解得,∴,∴y1=x+1,(2)由勾股定理得,A(3,4)∴OA=,∴OD=OA=5,当y1=0时,0=x+1∴x=-1,OC=1,CD=4S△ABD=S△DCB+S△DCA=.【点睛】本题考查了反比例函数与一次函数的交点问题,代入求值法是解题的关键.26、(1)A(-4,0)、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论