2023-2024学年浙江省台州院附中数学九年级第一学期期末学业水平测试模拟试题含解析_第1页
2023-2024学年浙江省台州院附中数学九年级第一学期期末学业水平测试模拟试题含解析_第2页
2023-2024学年浙江省台州院附中数学九年级第一学期期末学业水平测试模拟试题含解析_第3页
2023-2024学年浙江省台州院附中数学九年级第一学期期末学业水平测试模拟试题含解析_第4页
2023-2024学年浙江省台州院附中数学九年级第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年浙江省台州院附中数学九年级第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列航空公司的标志中,是轴对称图形的是()A. B. C. D.2.如图,点,,,,都在上,且的度数为,则等于()A. B. C. D.3.下列命题正确的是()A.三点确定一个圆 B.圆中平分弦的直径必垂直于弦C.矩形一定有外接圆 D.三角形的内心是三角形三条中线的交点4.已知反比例函数的图象经过点(2,-2),则k的值为A.4 B. C.-4 D.-25.宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH6.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k<3 B.k≥3 C.k>3 D.k≠37.下列方程是一元二次方程的是()A.2x2-5x+3 B.2x2-y+1=0 C.x2=0 D.+x=28.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1969.如图,矩形的边在轴的正半轴上,点的坐标为,反比例函数的图象经过矩形对角线的交点,则的值是()A.8 B.4 C.2 D.110.如图,在△ABC中,DE∥BC,若DE=2,BC=6,则=()A. B. C. D.11.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x212.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,m)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2C.﹣3<x<0或x>2 D.0<x<2二、填空题(每题4分,共24分)13.分解因式:=____________.14.如图,点A,B是双曲线上的点,分别过点A,B作轴和轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为____________.15.若点与关于原点对称,则的值是___________.16.如图,在Rt△ABC中,∠ACB=90°,tanB=则斜坡AB的坡度为____________17.在中,,则∠C的度数为____.18.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径长为,母线长为.在母线上的点处有一块爆米花残渣,且,一只蚂蚁从杯口的点处沿圆锥表面爬行到点,则此蚂蚁爬行的最短距离为____.三、解答题(共78分)19.(8分)如图,是的直径,切于点,交于点,平分,连接.(1)求证:;(2)若,,求的半径.20.(8分)如图,点A、B、C在⊙O上,用无刻度的直尺画图.(1)在图①中,画一个与∠B互补的圆周角;(2)在图②中,画一个与∠B互余的圆周角.21.(8分)网络比网络的传输速度快10倍以上,因此人们对产品充满期待.华为集团计划2020年元月开始销售一款产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第个月(为正整数)销售价格为元/台,与满足如图所示的一次函数关系:且第个月的销售数量(万台)与的关系为.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除元推广费用,当时销售利润最大值为22500万元时,求的值.22.(10分)如图所示的是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC,BC表示铁夹的两个面,O点是轴,OD⊥AC于点D,且AD=15mm,DC=24mm,OD=10mm.已知文件夹是轴对称图形,试利用图②,求图①中A,B两点间的距离.23.(10分)在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AD=8,DB=2,求CD的长24.(10分)解方程:x2﹣4x﹣12=1.25.(12分)如图,,以为直径作,交于点,过点作于点,交的延长线于点.(1)求证:是的切线;(2)若,,求的半径.26.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?

参考答案一、选择题(每题4分,共48分)1、C【分析】根据轴对称图形的概念判断即可.【详解】解:、不是轴对称图形,不合题意;、不是轴对称图形,不合题意;、是轴对称图形,符合题意;、不是轴对称图形,不合题意;故选:.【点睛】本题考查的是轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、D【分析】连接AB、DE,先求得∠ABE=∠ADE=25°,根据圆内接四边形的性质得出∠ABE+∠EBC+∠ADC=180°,即可求得∠CBE+∠ADC=155°.【详解】解:如图所示连接AB、DE,则∠ABE=∠ADE∵=50°∴∠ABE=∠ADE=25°∵点,,,都在上∴∠ADC+∠ABC=180°∴∠ABE+∠EBC+∠ADC=180°∴∠EBC+∠ADC=180°-∠ABE=180°-25°=155°故选:D.【点睛】本题主要考查的是圆周角定理和圆内接四边形的性质,作出辅助线构建内接四边形是解题的关键.3、C【分析】根据确定圆的条件、垂径定理、矩形的性质定理和三角形内心的定义,进行判断即可.【详解】∵不在一条直线上的三点确定一个圆,∴A错误;∵圆中平分弦(不是直径)的直径必垂直于弦,∴B错误;∵矩形一定有外接圆,∴C正确;∵三角形的内心是三角形三条角平分线的交点,∴D错误;故选:C.【点睛】本题主要考查真假命题的判断,掌握确定圆的条件、垂径定理、矩形的性质定理和三角形内心的定义,是解题的关键.4、C【解析】∵反比例函数的图象经过点(2,-2),∴.故选C.5、D【分析】先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形.【详解】解:设正方形的边长为2,则CD=2,CF=1

在直角三角形DCF中,∴矩形DCGH为黄金矩形

故选:D.【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形.6、C【分析】根据反比例函数的性质可解.【详解】解:∵双曲线在每一个象限内,y随x的增大而减小,∴k-3>0∴k>3故选:C.【点睛】本题考查了反比例函数的性质,掌握反比例函数,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.7、C【解析】一元二次方程必须满足四个条件:(1)未知数的最高次数是1;(1)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、不是方程,故本选项错误;B、方程含有两个未知数,故本选项错误;C、符合一元二次方程的定义,故本选项正确;D、不是整式方程,故本选项错误.故选:C.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.8、C【详解】试题分析:一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量:八、九月份的产量分别为50(1+x)、50(1+x)2,从而根据题意得出方程:50+50(1+x)+50(1+x)2=1.故选C.9、C【分析】根据矩形的性质求出点P的坐标,将点P的坐标代入中,求出的值即可.【详解】∵点P是矩形的对角线的交点,点的坐标为∴点P将点P代入中解得故答案为:C.【点睛】本题考查了矩形的性质以及反比例函数的性质,掌握代入求值法求出的值是解题的关键.10、D【解析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC

∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即==.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.11、B【分析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时,y=ax2+bx+c=bx+c,不是二次函数,故不符合题意;B.y=x(x﹣1)=x2-x,是二次函数,故符合题意;C.的自变量在分母中,不是二次函数,故不符合题意;D.y=(x﹣1)2﹣x2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数,据此求解即可.12、C【分析】一次函数y1=kx+b落在与反比例函数y1=图像上方的部分对应的自变量的取值范围即为不等式的解集.【详解】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y1=(c是常数,且c≠0)的图象相交于A(﹣3,﹣1),B(1,m)两点,∴不等式y1>y1的解集是﹣3<x<0或x>1.故答案为C.【点睛】本题考查了一次函数、反比例函数图像与不等式的关系,从函数图像确定不等式的解集是解答本题的关键.二、填空题(每题4分,共24分)13、【解析】分析:利用平方差公式直接分解即可求得答案.解答:解:a2-b2=(a+b)(a-b).故答案为(a+b)(a-b).14、1.【解析】试题分析:∵点A、B是双曲线上的点,∴S矩形ACOG=S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ACDF+S矩形BDGE=6+6﹣2﹣2=1,故答案为1.考点:反比例函数系数k的几何意义.15、1【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反.【详解】∵点与关于原点对称∴故填:1.【点睛】本题主要考查了关于原点对称的点的坐标特点,熟练掌握点的变化规律是关键.16、【分析】由题意直接利用坡度的定义进行分析计算即可得出答案.【详解】解:∵在Rt△ABC中,∠ACB=90°,tanB=,∴∠B=60°,∴∠A=30°,∴斜坡AB的坡度为:tanA=.故答案为:.【点睛】本题主要考查解直角三角形的应用,熟练掌握坡度的定义以及特殊三角函数值是解题的关键.17、【分析】先根据平方、绝对值的非负性求得、,再利用锐角三角函数确定、的度数,最后根据直角三角形内角和求得.【详解】解:∵∴∴∴∴.故答案是:【点睛】本题考查了平方、绝对值的非负性,锐角三角函数以及三角形内角和,熟悉各知识点是解题的关键.18、【解析】要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:,底面周长,将圆锥侧面沿剪开展平得一扇形,此扇形的半径,弧长等于圆锥底面圆的周长设扇形圆心角度数为,则根据弧长公式得:,,即展开图是一个半圆,点是展开图弧的中点,,连接,则就是蚂蚁爬行的最短距离,在中由勾股定理得,,,即蚂蚁爬行的最短距离是.故答案为:.【点睛】考查了平面展开最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.三、解答题(共78分)19、(1)见解析;(2).【分析】(1)连接OC,则,由角平分线的性质和,得到,即可得到结论成立;(2)由AB是直径,得到∠AEB=90°,则四边形DEFC是矩形,由三角形中位线定理,得到BE=2CD=8,由勾股定理,即可求出答案.【详解】(1)证明:连接,交于,由是切线得;又∵,∴,∵,∴,∴,∴,即.(2)解:∵是的直径,∴,∵,∴,∴,∵,∴,∴,∵,∴四边形是矩形,∴,∴,∴;∴的半径为.【点睛】本题考查了圆的切线的性质,矩形的判定和性质,角平分线性质,三角形的中位线定理,以及勾股定理,解题的关键是掌握所学知识进行求解,正确得到AB的长度.20、(1)见解析;(2)见解析【解析】试题分析:圆内接四边形的对角互补.直径所对的圆周角是直角.试题解析:如图①,即为所求.如图②,即为所求.点睛:圆内接四边形的对角互补.直径所对的圆周角是直角.21、(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4).【解析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b求k,b确定表达式,求当x=6时的y值即可;(2)求销售额w与x之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得,,解得,,∴y=-500x+7500,当x=6时,y=-500×6+7500=4500元;(2)设销售额为z元,z=yp=(-500x+7500)(x+1)=-500x2+7000x+7500=-500(x-7)2+32000,∵z与x成二次函数,a=-500<0,开口向下,∴当x=7时,z有最大值,当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z与x的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x1=10,x2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W=-500x2+7000x+7500-m(x+1)=-500x2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m)×6+7500-m=22500,解得,m=,此时7月份的总利润为-500×72+(7000-)×7+7500-≈17714<22500,此时8月份的总利润为-500×82+(7000-)×8+7500-≈19929<22500,∴当m=时,6月份利润最大,且最大值为22500万元.第二种情况:当x=7时,-500×72+(7000-m)×7+7500-m=22500,解得,m=1187.5,此时6月份的总利润为-500×62+(7000-1187.5)×6+7500-1187.5=23187.5>22500,∴当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-500×82+(7000-m)×8+7500-m=22500,解得,m=1000,此时7月份的总利润为-500×72+(7000-1000)×7+7500-1000=24000>22500,∴当m=1000不符合题意,此种情况不存在.∴当时销售利润最大值为22500万元时,此时m=.【点睛】本题考查二次函数的实际应用,最大利润问题,利用二次函数的最值性质是解决实际问题的重要途径.22、AB=30(mm)【解析】解:如图所示,连接AB,与CO的延长线交于点E.∵夹子是轴对称图形,对称轴是CE,且A,B为一组对称点,∴CE⊥AB,AE=EB.在Rt△AEC和Rt△ODC中,∵∠ACE=∠OCD,∴Rt△AEC∽Rt△ODC,∴.∵(mm),∴(mm).∴AB=2AE=15×2=30(mm).23、CD=1【分析】利用相似三角形的判定和性质,先求出△ADC∽△CDB,再根据对应边成比例,即可求出CD的值.【详解】∵CD⊥AB,∴∠ADC=∠CDB=90°,∴∠ACD+∠A=90°,∵∠ACB=90°,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论