![上海市理工大附中2024届高三元月月考数学试题_第1页](http://file4.renrendoc.com/view10/M02/25/39/wKhkGWWURAuAP1IHAAGbYR9McaI983.jpg)
![上海市理工大附中2024届高三元月月考数学试题_第2页](http://file4.renrendoc.com/view10/M02/25/39/wKhkGWWURAuAP1IHAAGbYR9McaI9832.jpg)
![上海市理工大附中2024届高三元月月考数学试题_第3页](http://file4.renrendoc.com/view10/M02/25/39/wKhkGWWURAuAP1IHAAGbYR9McaI9833.jpg)
![上海市理工大附中2024届高三元月月考数学试题_第4页](http://file4.renrendoc.com/view10/M02/25/39/wKhkGWWURAuAP1IHAAGbYR9McaI9834.jpg)
![上海市理工大附中2024届高三元月月考数学试题_第5页](http://file4.renrendoc.com/view10/M02/25/39/wKhkGWWURAuAP1IHAAGbYR9McaI9835.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市理工大附中2024届高三元月月考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在原点附近的部分图象大概是()A. B.C. D.2.已知函数f(x)=eb﹣x﹣ex﹣b+c(b,c均为常数)的图象关于点(2,1)对称,则f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.43.已知是定义在上的奇函数,且当时,.若,则的解集是()A. B.C. D.4.已知函数,若函数有三个零点,则实数的取值范围是()A. B. C. D.5.如图,在正方体中,已知、、分别是线段上的点,且.则下列直线与平面平行的是()A. B. C. D.6.执行如图所示的程序框图,若输入的,则输出的()A.9 B.31 C.15 D.637.在中,,则=()A. B.C. D.8.设直线过点,且与圆:相切于点,那么()A. B.3 C. D.19.在平面直角坐标系中,经过点,渐近线方程为的双曲线的标准方程为()A. B. C. D.10.连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为()A. B. C. D.11.函数的图象的大致形状是()A. B. C. D.12.若a>b>0,0<c<1,则A.logac<logbc B.logca<logcb C.ac<bc D.ca>cb二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线(a>0,b>0)的一条渐近线方程为,则该双曲线的离心率为_______.14.已知在等差数列中,,,前n项和为,则________.15.已知椭圆,,若椭圆上存在点使得为等边三角形(为原点),则椭圆的离心率为_________.16.曲线在点处的切线方程为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xoy中,曲线C的方程为.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)写出曲线C的极坐标方程,并求出直线l与曲线C的交点M,N的极坐标;(2)设P是椭圆上的动点,求面积的最大值.18.(12分)已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求实数x的取值范围.19.(12分)已知f(x)=|x+3|-|x-2|(1)求函数f(x)的最大值m;(2)正数a,b,c满足a+2b+3c=m,求证:20.(12分)设函数.(1)当时,解不等式;(2)设,且当时,不等式有解,求实数的取值范围.21.(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:组别男235151812女051010713(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:红包金额(单位:元)1020概率现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822.(10分)在平面直角坐标系中,曲线(为参数),以坐标原点为极点,轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的普通方程;(2)若P,Q分别为曲线,上的动点,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
分析函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【题目详解】令,可得,即函数的定义域为,定义域关于原点对称,,则函数为奇函数,排除C、D选项;当时,,,则,排除B选项.故选:A.【题目点拨】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.2、C【解题分析】
根据对称性即可求出答案.【题目详解】解:∵点(5,f(5))与点(﹣1,f(﹣1))满足(5﹣1)÷2=2,故它们关于点(2,1)对称,所以f(5)+f(﹣1)=2,故选:C.【题目点拨】本题主要考查函数的对称性的应用,属于中档题.3、B【解题分析】
利用函数奇偶性可求得在时的解析式和,进而构造出不等式求得结果.【题目详解】为定义在上的奇函数,.当时,,,为奇函数,,由得:或;综上所述:若,则的解集为.故选:.【题目点拨】本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在处有意义时,的情况.4、B【解题分析】
根据所给函数解析式,画出函数图像.结合图像,分段讨论函数的零点情况:易知为的一个零点;对于当时,由代入解析式解方程可求得零点,结合即可求得的范围;对于当时,结合导函数,结合导数的几何意义即可判断的范围.综合后可得的范围.【题目详解】根据题意,画出函数图像如下图所示:函数的零点,即.由图像可知,,所以是的一个零点,当时,,若,则,即,所以,解得;当时,,则,且若在时有一个零点,则,综上可得,故选:B.【题目点拨】本题考查了函数图像的画法,函数零点定义及应用,根据零点个数求参数的取值范围,导数的几何意义应用,属于中档题.5、B【解题分析】
连接,使交于点,连接、,可证四边形为平行四边形,可得,利用线面平行的判定定理即可得解.【题目详解】如图,连接,使交于点,连接、,则为的中点,在正方体中,且,则四边形为平行四边形,且,、分别为、的中点,且,所以,四边形为平行四边形,则,平面,平面,因此,平面.故选:B.【题目点拨】本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题.6、B【解题分析】
根据程序框图中的循环结构的运算,直至满足条件退出循环体,即可得出结果.【题目详解】执行程序框;;;;;,满足,退出循环,因此输出,故选:B.【题目点拨】本题考查循环结构输出结果,模拟程序运行是解题的关键,属于基础题.7、B【解题分析】
在上分别取点,使得,可知为平行四边形,从而可得到,即可得到答案.【题目详解】如下图,,在上分别取点,使得,则为平行四边形,故,故答案为B.【题目点拨】本题考查了平面向量的线性运算,考查了学生逻辑推理能力,属于基础题.8、B【解题分析】
过点的直线与圆:相切于点,可得.因此,即可得出.【题目详解】由圆:配方为,,半径.∵过点的直线与圆:相切于点,∴;∴;故选:B.【题目点拨】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.9、B【解题分析】
根据所求双曲线的渐近线方程为,可设所求双曲线的标准方程为k.再把点代入,求得k的值,可得要求的双曲线的方程.【题目详解】∵双曲线的渐近线方程为设所求双曲线的标准方程为k.又在双曲线上,则k=16-2=14,即双曲线的方程为∴双曲线的标准方程为故选:B【题目点拨】本题主要考查用待定系数法求双曲线的方程,双曲线的定义和标准方程,以及双曲线的简单性质的应用,属于基础题.10、D【解题分析】
先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从而求得其离心率.【题目详解】双曲线与互为共轭双曲线,四个顶点的坐标为,四个焦点的坐标为,四个顶点形成的四边形的面积,四个焦点连线形成的四边形的面积,所以,当取得最大值时有,,离心率,故选:D.【题目点拨】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目.11、B【解题分析】
根据函数奇偶性,可排除D;求得及,由导函数符号可判断在上单调递增,即可排除AC选项.【题目详解】函数易知为奇函数,故排除D.又,易知当时,;又当时,,故在上单调递增,所以,综上,时,,即单调递增.又为奇函数,所以在上单调递增,故排除A,C.故选:B【题目点拨】本题考查了根据函数解析式判断函数图象,导函数性质与函数图象关系,属于中档题.12、B【解题分析】试题分析:对于选项A,,,,而,所以,但不能确定的正负,所以它们的大小不能确定;对于选项B,,,两边同乘以一个负数改变不等号方向,所以选项B正确;对于选项C,利用在第一象限内是增函数即可得到,所以C错误;对于选项D,利用在上为减函数易得,所以D错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据题意,由双曲线的渐近线方程可得,即a=2b,进而由双曲线的几何性质可得cb,由双曲线的离心率公式计算可得答案.【题目详解】根据题意,双曲线的渐近线方程为y=±x,又由该双曲线的一条渐近线方程为x﹣2y=0,即yx,则有,即a=2b,则cb,则该双曲线的离心率e;故答案为:.【题目点拨】本题考查双曲线的几何性质,关键是分析a、b之间的关系,属于基础题.14、39【解题分析】
设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.【题目详解】设等差数列公差为d,首项为,根据题意可得,解得,所以.故答案为:39【题目点拨】本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.15、【解题分析】
根据题意求出点N的坐标,将其代入椭圆的方程,求出参数m的值,再根据离心率的定义求值.【题目详解】由题意得,将其代入椭圆方程得,所以.故答案为:.【题目点拨】本题考查了椭圆的标准方程及几何性质,属于中档题.16、【解题分析】
求导,得到和,利用点斜式即可求得结果.【题目详解】由于,,所以,由点斜式可得切线方程为.故答案为:.【题目点拨】本题考查利用导数的几何意义求切线方程,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,;(2).【解题分析】
(1)利用公式即可求得曲线的极坐标方程;联立直线和曲线的极坐标方程,即可求得交点坐标;(2)设出点坐标的参数形式,将问题转化为求三角函数最值的问题即可求得.【题目详解】(1)曲线的极坐标方程:联立,得,又因为都满足两方程,故两曲线的交点为,.(2)易知,直线.设点,则点到直线的距离(其中).面积的最大值为.【题目点拨】本题考查极坐标方程和直角坐标方程之间的相互转化,涉及利用椭圆的参数方程求面积的最值问题,属综合中档题.18、≤x≤【解题分析】由题知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,当且仅当(a+b)·(a-b)≥0时取等号,∴的最小值等于2.∴x的范围即为不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.19、(1)(2)见解析【解题分析】
(1)利用绝对值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式证得不等式成立;方法二,利用“的代换”的方法,结合基本不等式证得不等式成立.【题目详解】(1)由绝对值不等式性质得当且仅当即时等号成立,所以(2)由(1)得.法1:由柯西不等式得当且仅当时等号成立,即,所以.法2:由得,,当且仅当时“=”成立.【题目点拨】本小题主要考查绝对值三角不等式,考查利用柯西不等式、基本不等式证明不等式,属于中档题.20、(1);(2).【解题分析】
(1)通过分类讨论去掉绝对值符号,进而解不等式组求得结果;(2)将不等式整理为,根据能成立思想可知,由此构造不等式求得结果.【题目详解】(1)当时,可化为,由,解得;由,解得;由,解得.综上所述:所以原不等式的解集为.(2),,,,有解,,即,又,,实数的取值范围是.【题目点拨】本题考查绝对值不等式的求解、根据不等式有解求解参数范围的问题;关键是明确对于不等式能成立的问题,通过分离变量的方式将问题转化为所求参数与函数最值之间的比较问题.21、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 听评课记录六年级数学
- 2022年新课标八年级上册道德与法第四课 社会生活讲道德 听课评课记录
- 五年级下册数学听评课记录《1总复习:倍数和因数》人教新课标
- 华师大版数学八年级下册《平行四边形边、角的性质》听评课记录
- 数学听评课记录二年级下
- 《青铜器与甲骨文》名师听课评课记录(新部编人教版七年级上册历史)
- 新人教版七年级数学上册2.2《 整式的加减》听评课记录
- 青岛版数学八年级下册《实数》听评课记录1
- 小学二年级口算题
- 乡村振兴银企战略合作协议书范本
- GB/T 308.1-2013滚动轴承球第1部分:钢球
- 中药炮制学-第五、六章
- 新员工入场安全教育培训课件
- 中国风军令状誓师大会PPT模板
- 小儿高热惊厥精品课件
- 2023机械工程师考试试题及答案
- 2022年电拖实验报告伍宏淳
- 丰田汽车战略规划与战略管理体系研究(2021)
- 公共政策学(第三版)-课件
- 冷却塔是利用水和空气的接触
- 我的家乡--安徽亳州.PPT
评论
0/150
提交评论