版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
C280,ComputerVision
Prof.TrevorDarrell
trevor@
Lecture6:LocalFeatures
LastTime:ImagePyramids
•ReviewofFourierTransform
•SamplingandAliasing
•ImagePyramids
•Applications:Blendingandnoiseremoval
Today:FeatureDetectionand
Matching
•Localfeatures
•Pyramidsforinvariantfeaturedetection
•Invariantdescriptors
•Matching
Imagematching
byDivaSian
byswashford
Hardercase
byDivaSianbyscqbt
Harderstill?
NASAMarsRoverimages
Answerbelow(lookfortinycoloredsquares...)
NASAMarsRoverimages
withSIFTfeaturematches
FigurebyNoahSnavely
Localfeaturesandalignment
•Weneedtomatch(align)images
•Globalmethodssensitivetoocclusion,lighting,parallax
effects.Solookforlocalfeaturesthatmatchwell.
•Howwouldyoudoitbyeye?
[DaryaFrolovaandDenisSimakov]
Localfeaturesandalignment
•Detectfeaturepointsinbothimages
[DaryaFrolovaandDenisSimakov]
Localfeaturesandalignment
•Detectfeaturepointsinbothimages
•Findcorrespondingpairs
[DaryaFrolovaandDenisSimakov]
Localfeaturesandalignment
•Detectfeaturepointsinbothimages
•Findcorrespondingpairs
•Usethesepairstoalignimages
[DaryaFrolovaandDenisSimakov]
Localfeaturesandalignment
•Problem1:
-Detectthesamepointindependentlyinboth
images
nochancetomatch!
Weneedarepeatabledetector
[DaryaFrolovaandDenisSimakov]
Localfeaturesandalignment
•Problem2:
-Foreachpointcorrectlyrecognizethe
correspondingone
Weneedareliableanddistinctivedescriptor
[DaryaFrolovaandDenisSimakov]
Geometrictransformations
Photometrictransformations
FigurefromT.TuytelaarsECCV2006tutorial
Andothernuisances...
•Noise
•Blur
•Compressionartifacts
Invariantlocalfeatures
Subsetoflocalfeaturetypesdesignedtobeinvariantto
commongeometricandphotometrictransformations.
Basicsteps:
1)Detectdistinctiveinterestpoints
2)Extractinvariantdescriptors
Figure:DavidLowe
Mainquestions
•Wherewilltheinterestpointscomefrom?
-Whataresalientfeaturesthatwelldetectin
multipleviews?
•Howtodescribealocalregion?
•Howtoestablishcorrespondences,i.e.,
computematches?
Figure4.3:Imagepairswithextractedpatchesbelow.Noticehowsomepatchescanbelocalized
ormatchedwithhigheraccuracythanothers.
FindingCorners
Keyproperty:intheregionaroundacorner,
imagegradienthastwoormoredominant
directions
Cornersarerepeatableanddistinctive
C.HarrisandM.Stephens."ACombinedComerandEdgeDetector.”
Proceedingsofthe4thAlveyVisionConference:pages147-151.
Source:LanaLazebnik
Cornersasdistinctiveinterestpoints
Weshouldeasilyrecognizethepointby
lookingthroughasmallwindow
Shiftingawindowinanydirectionshouldgive
alargechangeinintensity
“flat”region:“edge”:“corner”:
nochangeinnochangesignificant
alldirectionsalongtheedgechangeinall
directiondirections
Source:A.Efros
HarrisDetectorformulation
Changeofintensityfortheshift[u,v\\
v)=ZMx,y)[/(x+么y+v)—
1inwindow,0outsideGaussian
Source:R.Szeliski
HarrisDetectorformulation
Thismeasureofchangecanbeapproximatedby:
u
E(u,v)[uv]M
V
whereMisa2x2matrixcomputedfromimagederivatives:
rii
M=£w(x,y)XXyGradientwith
III2respecttox,
xyytimesgradient
withrespecttoy
Sumoverimageregion-area
wearecheckingforcorner
£Ix【xEIxlylx
M=[[①ly]
£Ixly£lyly
HarrisDetectorformulation
whereMisa2x2matrixcomputedfromimagederivatives:
M=£w(x,y)3Gradientwith
respecttox,
Atimesgradient
withrespecttoy
Sumoverimageregion-area
wearecheckingforcorner
£Ix【xEIxly
M=[[①ly]
£Ixly£lyly
Whatdoesthismatrixreveal?
First,consideranaxis-alignedcorner:
Whatdoesthismatrixreveal?
First,consideranaxis-alignedcorner:
o-
M=
5Z4=_o
Thismeansdominantgradientdirectionsalignwith
xoryaxis
IfeitherAiscloseto0,thenthisisnotacorner,so
lookforlocationswherebotharelarge.
Whatifwehaveacornerthatisnotalignedwiththe
imageaxes?
Slidecredit:DavidJacobs
GeneralCase
40
SinceMissymmetric,wehaveM=R~]R
o4
WecanvisualizeMasanellipsewithaxis
lengthsdeterminedbytheeigenvaluesand
orientationdeterminedbyR
directionofthe
slowestchange
SlideadaptedformDaryaFrolova,DenisSimakov.
Interpretingtheeigenvalues
Classificationofimagepointsusingeigenvalues
ofM:
九2
九1and九2aresmall;
Eisalmostconstant
inalldirections
Cornerresponsefunction
R=det(M)-atrace(M)2=44一研4+4)?
a:constant(0.04to0.06)
HarrisCornerDetector
•Algorithmsteps:
-ComputeMmatrixwithinallimagewindowstoget
theirRscores
-Findpointswithlargecornerresponse
(/?>threshold)
-TakethepointsoflocalmaximaofR
HarrisDetector:Workflow
SlideadaptedformDaryaFrolova,DenisSimakov,WeizmannInstitute.
HarrisDetector:Workflow
ComputecornerresponseR
HarrisDetector:Workflow
Findpointswithlargecornerresponse:7?>threshold
HarrisDetector:Workflow
TakeonlythepointsoflocalmaximaofR
HarrisDetector:Workflow
HarrisDetector:Properties
•Rotationinvariance
Ellipserotatesbutitsshape(i.e.
eigenvalues)remainsthesame
CornerresponseRisinvarianttoimagerotation
HarrisDetector:Properties
•Notinvarianttoimagescale
G
AllpointswillbeCorner!
classifiedasedges
•Howcanwedetectscaleinvariant
interestpoints?
Howtocopewithtransformations?
•Exhaustivesearch
•Invariance
•Robustness
Exhaustivesearch
•Multi-scaleapproach
SlidefromT.TuytelaarsECCV2006tutorial
Exhaustivesearch
•Multi-scaleapproach
为
Exhaustivesearch
•Multi-scaleapproach
Exhaustivesearch
•Multi-scaleapproach
Invariance
•Extractpatchfromeachimageindividually
Automaticscaleselection
•Solution:
-Designafunctionontheregion,whichis“scale
invariant55(thesameforcorrespondingregions,
eveniftheyareatdeferentscales}
Example:averageintensity.Forcorresponding
regions(evenofdifferentsizes)itw川bethesame.
-Forapointinoneimage,wecanconsideritas
afunctionofregionsize(patchwidth)
regionsizeregionsize
Automaticscaleselection
•Commonapproach:
Takealocalmaximumofthisfunction
Observation:regionsize,forwhichthemaximumis
achieved,shouldbeinvarianttoimagescale.
Important:thisscaleinvariantregionsizeis
foundineachimageindependently!
AutomaticScaleSelection
_
.s
」o
l
n
j
_
u
o
E
u
6
o
o
aH)Sameoperatorresponsesifthepatchcontainsthesameimageup
ol
gtoscalefactor.
q
o
ron48
sK.Grauman,B.Leibe
>
AutomaticScaleSelection
Functionresponsesforincreasingscale(scalesignature)
Hro
o
nl
l
U
O
E
U
6
0
0
0H)
l
o
a)-
q
o
a
n
s49
>K.Grauman,B.Leibe
AutomaticScaleSelection
Functionresponsesforincreasingscale(scalesignature)
Hro
o
l
n
l
U
O
E
U
6
0
0
0>H
l
o
a)-
q
o
-
e
n
s
>50
K.Grauman,B.Leibe
AutomaticScaleSelection
Functionresponsesforincreasingscale(scalesignature)
Hro
o
nl
l
U
0
4
C
6
0
0
0>H
l
o
a)-
q
o
-
e
n
sK.Grauman,B.Leibe
>
AutomaticScaleSelection
•Functionresponsesforincreasingscale(scalesignature)
_
.s
o」
nl
_j
U
0
E
U
6
0
。①
a
l
o
g
q
o
7nB
s
>52
K.Grauman,B.Leibe
AutomaticScaleSelection
-
B
H
O
nl
l
U
O
E
U
6
O
O
O
H
l
o
o)-
q
o
a
n
s
>
K.Grauman,B.Leibe
AutomaticScaleSelection
Hro
o
nl
l
U
O
4
C
6
O
O
O
H
1
0
<D-
q
0
a
n
s
>54
K.Grauman,B.Leibe
Scaleselection
•Usethescaledeterminedbydetectortocompute
descriptorinanormalizedframe
[ImagesfromT.Tuytelaars]
WhatIsAUsefulSignatureFunction?
Laplacian-of-Gaussian="blob"detector
-
B
M
O
l
n
l
U
0
W
U
6
0
0
①
a
ol
a-)
q
o
-
e
n
s
>
56
K.Grauman,B.Leibe
Characteristicscale
Wedefinethecharacteristicscaleasthescale
thatproducespeakofLaplacianresponse
2000
1500
1000
500
°017
characteristicscale
T.Lindeberg(1998)."FeaturedetectionwthautomaticscaleselectionJ
InternationalJournalofComputerVision30(2):pp77--116.Source:LanaLazebnik
Laplacian-of-Gaussian(LoG)
•Interestpoints:
5
Localmaximainscalea
spaceofLaplacian-of-
Gaussiana4
-
B
M
O
l
n
l
U
O
4
C
6
O2
。o
①
a
1
0nListof
<l-)
q
0
76n
s
>
K.Grauman,B.Leibe
Scale-spaceblobdetector:Example
Source:LanaLazebnik
Scale-spaceblobdetector:Example
sigma=11.9912
Source:LanaLazebnik
Scale-spaceblobdetector:Example
Source:LanaLazebnik
KeypointlocalizationwithDoG
•Detectmaximaof
difference-of-Gaussian
(DoG)inscalespace
•Thenrejectpointswithlow
contrast(threshold)
•Eliminateedgeresponses
Candidatekeypoints:
listof(x,y,o)
Exampleofkeypointdetection
(a)233x189image
(b)832DOGextrema
(c)729leftafterpeak
valuethreshold
(d)536leftaftertesting
ratioofprinciple
curvatures(removing
edgeresponses)
ScaleInvariantDetection:Summary
•Given:twoimagesofthesamescenewitha
largescaledifferencebetweenthem
•Goal:findthesameinterestpoints
independentlyineachimage
•Solution:searchformaximaofsuitable
functionsinscaleandinspace(overthe
image)
Mainquestions
•Wherewilltheinterestpointscomefrom?
-Whataresalientfeaturesthatwelldetectin
multipleviews?
•Howtodescribealocalregion?
•Howtoestablishcorrespondences,i.e.,
computematches?
Localdescriptors
•Weknowhowtodetectpoints
•Nextquestion:
Howtodescribethemformatching?
Pointdescriptorshouldbe:
1.Invariant
2.Distinctive
Localdescriptors
•Simplestdescriptor:listofintensitieswithin
apatch.
•Whatisthisgoingtobeinvariantto?
WriteregionsasvectorsregionB
A—>a,B-yb
I
I
vectoravectorb
Featuredescriptors
Disadvantageofpatchesasdescriptors:
•Smallshiftscanaffectmatchingscorealot
Solution:histograms
o2兀
Source:LanaLazebnik
Featuredescriptors:SIFT
ScaleInvariantFeatureTransform
Descriptorcomputation:
•Dividepatchinto4x4sub-patches:16cells
•Computehistogramofgradientorientations(8reference
angles)forallpixelsinsideeachsub-patch
•Resultingdescriptor:4x4x8=128dimensions
DavidG.Lowe."Distinctiveimagefeaturesfromscale-invariantkeypoints."IJCV60
(2),pp.91-110,2004.
Source:LanaLazebnik
RotationInvariantDescriptors
•Harriscornerresponsemeasure:
dependsonlyontheeigenvaluesofthe
matrixM
E㈡人
RotationInvariantDescriptors
•Findlocalorientation
Dominantdirectionofgradientfortheimagepatch
•Rotatepatchaccordingtothisangle
Thisputsthepatchesintoacanonical
orientation.
RotationInvariantDescriptors
ImagefromMatthewBrown
Featuredescriptors:SIFT
Extraordinarilyrobustmatchingtechnique
•Canhandlechangesinviewpoint
-Uptoabout60degreeoutofplanerotation
・Canhandlesignificantchangesinillumination
-Sometimesevendayvs.night(below)
•Fastandefficient-canruninrealtime
・Lotsofcodeavailable
一http:〃/albert/ladvnack/wiki/index.php/KnownimplementationsofSIFT
WorkingwithSIFTdescriptors
•Oneimageyields:
-n128-dimensionaldescriptors:each
oneisahistogramofthegradient
orientationswithinapatch
•[nx128matrix]
一nscaleparametersspecifyingthesize
ofeachpatch
•[nx1vector]
-norientationparametersspecifyingthe
angleofthepatch
•[nx1vector]
-n2dpointsgivingpositionsofthe
patches
•[nx2matrix]
AffineInvariantDetection
(aproxyforinvariancetoperspectivetransformations)
•Aboveweconsidered:
Similarity•transfo匚rm(rota•tion+uniformscale)
•Nowwegoonto:
Affinetransform(rotation+non-uniformscale)
■U
Mikolajczyk:HarrisLaplace
Mikolajczyk:HarrisLaplace
7.Initialization:MultiscaleHarriscorner
detection
2ScaleselectionbasedonLaplacian
Harrispoints
Harris-Laplacepoints
Mikolajczyk:HarrisAffine
►BasedonHarrisLaplace
►Usingnormalization/deskewing
Mikolajczyk:HarrisAffine
1.Detectmulti-scaleHarrispoints
2.Automaticallyselectthescales
3.Adaptaffineshapebasedonsecondordermomentmatrix
4.Refinepointlocation
Mikolajczyk:affineinvariant
interestpoints
1.Initialization:MultiscaleHarriscorner
detection
2.Iterativealgorithm
Normalizewindow(deskewing)
Selectintegrationscale(max.ofLoG)
Selectdifferentiationscale(max.
Detectspatiallocalization(Harris)
Computenewaffinetransformation
Gotostep2.(unlessstopcriterion)
HarrisAffine
AffineInvariantDetection:
Summary
•Underaffinetransformation,wedonotknowinadvance
shapesofthecorrespondingregions
•Ellipsegivenbygeometriccovariancematrixofaregion
robustlyapproximatesthisregion
•Forcorrespondingregionsellipsesalsocorrespond
OtherMethods:
1.Searchforextremumalongrays[Tuytelaars,VanGool]:
2.MaximallyStableExtremalRegions[Mataset.al.]
Featuredetectoranddescriptorsummary
•Stable(repeatable)featurepointscanbe
detectedregardlessofimagechanges
-Scale:searchforcorrectscaleasmaximumofappropriatefunction
-Affine:approximateregionswithellipses(thisoperationisaffine
invariant)
•Invariantanddistinctivedescriptorscanbe
computed
-Invariantmoments
-Normalizingwithrespecttoscaleandaffinetransformation
Moreonfeaturedetection/description
Address;希http://www.robots.ox.ac.uk/~vgg/research/affine/
Google▼mikolajczyk▼侬SearchWeb
AffineCovariantRegions
Publications
Regiondetectors•Harris-Affine&HessianAffine.K.MikolajczykandC.Schmid,ScaleandAffineinvariantinterestpointdetectors.In
UCV1(60):63-86,2004.PDF
•MSER.J.Matas,0.Chum,M.Urban,andT.Pajdla,Robustwidebaselinestereofrommaximallystableextremalregions.
InBMVCp.384-393,2002.PDF
•1BR&EBR.T.TuytelaarsandL.VonGool,MatchingwidelyseparatedviewsbasedonaflSneinvariantregions.InUCV1
(59):61-85,2004.PDF
•Salientregions:T.Kadir,A.Zisserman,andM.Brady,Anaffineinvariantsalientregiondetector.InECCVp.404-416,
2004.PDF
Regiondescriptors•SIFT.D.Lowe,Distinctiveimagefeaturesfromscaleinvariantkeypoints.InUCV2(60):91-110,2004.PDF
Performance•K.Mkolaiczyk,T.Tuytelaars,C.Schmid,A.Zisserman,J.Matas,F.Schafifalitzky,T.KadirandL.VanGool,A
evaluationcomparisonofaffineregiondetectors.TechnicalReport,acceptedtoUCV.PDF
•K.Mikolajczyk,C.Schmid,Aperformanceevaluationoflocaldescriptors.TechnicalReport,acceptedtoPAMI.PDF
Mainquestions
•Wherewilltheinterestpointscomefrom?
-Whataresalientfeaturesthatwelldetectin
multipleviews?
•Howtodescribealocalregion?
•Howtoestablishcorrespondences,i.e.,
computematches?
Featuredescriptors
Weknowhowtodetectanddescribegoodpoints
Nextquestion:Howtomatchthem?
Featurematching
Givenafeatureinl1}howtofindthebestmatchinl2?
1.Definedistancefunctionthatcomparestwodescriptors
2.Testallthefeaturesinl2,findtheonewithmindistance
Featuredistance
Howtodefinethedifferencebetweentwofeatures,f2?
•SimpleapproachisSSD(t|,f2)
-sumofsquaredifferencesbetweenentriesofthetwodescriptors
-cangivegoodscorestoveryambiguous(bad)matches
12
Featuredistance
Howtodefinethedifferencebetweentwofeatures,f2?
•Betterapproach:ratiodistance=880(^,f2)/SSD(f),f?')
-f2isbestSSDmatchtoinl2
nd
-f2'is2bestSSDmatchtoiinl2
-givessmallvaluesforambiguousmatches
Evaluatingtheresults
Howcanwemeasuretheperformanceofafeaturematcher?
200
featuredistance
True/falsepositives
-50—
truematch
-75-
-2oq-
falsematch
featuredistance
Thedistancethresholdaffectsperformance
•Truepositives=#ofdetectedmatchesthatarecorrect
-Supposewewanttomaximizethese—howtochoosethreshold?
•Falsepositives=#ofdetectedmatchesthatareincorrect
-Supposewewanttominimizethese—howtochoosethreshold?
Evaluatingtheresults
Howcanwemeasuretheperformanceofafeaturematcher?
______#truepositives
#matchingfeatures(positives)
______#falsepositives______
#unmatchedfeatures(negatives)
Evaluatingtheresults
Howcanwemeasuretheperformanceofafeaturematcher?
ROCcurve("ReceiverOperatorCharacteristic")
______#truepositives
#matchingfeatures(positives)
______#falsepositives______
#unmatchedfeatures(negatives)
ROCCurves
•Generatedbycounting#current/incorrectmatches,fordifferentthreholds
•Wanttomaximizeareaunderthecurve(AUC)
•Usefulforcomparingdifferentfeaturematchingmethods
•Formoreinfo:http:〃en.wikipedia.orq/wiki/Receiveroperatingcharacteristic
Advancedlocalfeaturestopics
•Self-Similarity
•Space-Time
MatchingLocalSeif-SimilaritiesacrossImagesandVideos
EliShechimanMichalIrani
Dept,ofComputerScienceandAppliedMath
TheWeizmannInstituteofScience
76100Rehovot,Israel
Abstract
Wepresentanapproachformeasuringsimilaritybe
tweenvisualentities(imagesorvideos)basedonmatch
inginternalself-similarities.Whatiscorrelatedacross
images(oracrossvideosequences)istheinternallay
outoflocalself-similarities(uptosomedistortions).e\ren
thoughthepatternsgeneratingthoselocalself-similarities
arequitedifferentineachoftheinuigesAideos.Thesein
ternalself-similaritiesareefficientlycapturedbyacom-
9
paalocal^self-similaritydescriptorfmeasureddensely
throughouttheiniage/video,atmultiplescales,whileac-
cowuingforlocalandglobalgeometricdistortions.This
givesrisetomatchingcapabilitiesofcomplexvisualdata,
includingdetectionofobjectsinrealclutteredimagesusing
onlyroughhand-sketches,handlingtexturedobjeaswith
noclearboundaries,anddetectingcomplexactionsincha-
teredvideodatawithnopriorlearning.Wecompareour
measuretocommonlyusedimage-basedandvideo-based
similaritymeasures,anddemonstrateitsapplicabilitytoob-
jeadetection,retrieval,andactiondetection.
FiguiuLTheseimagesofthesameobject(aheart)doNOTshare
commonimageproperties(colors,textures,edges),butDOshare
asimilargeometriclayoutoflocaliruernalself-similarines.
InputimageCorrelationImage
surfacedescriptor
Figure3.Corresponding"-Self-similaritydescriptors''.We
showafewcorrespondingpoints(1,2,3)acrosstwoimagesofthe
sameobject,withtheir"self-simUarity"descriptors.Despitethe
largedifferenceinphotometricpropertiesbetweenthetwoimages,
theircorrespondingself-similarity"descriptorsarequitesimilar.
Figure4.Objectdetection,(a)Asingletemplateimage(aflower),
(b)Theimagesagainstwhichitwascomparedwiththecorre
spondingdetections.Thecontinuouslikelihoodvaluesabovea
threshold(samethresholdforallimages)areshownsuperimposed
onthegrayscaleimages,displayingdetectionsofthetemplateat
correctlocations(redcorrespondstothehighestvalues).
⑶入
Figure6.Detectionusingasketch,(a)Ahand-sketchedtem
plate.(b)Theimagesagainstwhichitwascomparedwiththe
correspondingdetections.
Image1Image2OurMethodGLOHShapeMutual
(template)(extendedSIFT)ContextInformation
旗INRIA
Humanactions
incomputervision
IvanLaptev
INRIARennes,France
ivan.laptev@inria.fr
Summerschool,June30-July11,2008,LotusHill,China
Motivation
Goal:
Interpretation
ofdynamic
scenes
...non-rigidobjectmotion...cameramotion...complexbackgroundmotion
Commonmethods:Commonproblems:
•Camerastabilization•ComplexBGmotion
•Segmentation?
•Changesinappearance
•TrackingQ一
=>Noglobalassumptionsaboutthescene
Space-time
Noglobalassumptions=>
Considerlocalspatio-temporalneighborhoods
Space-time
Noglobalassumptions=>
Considerlocalspatio-temporalneighborhoods
Space-Timeinterestpoints
Whatneighborhoodstoconsider?
HighimageLookatthe
Distinctive
=variationin=distributionof
neighborhoods
spaceandtimethegradient
Definitions:
/:R2xRROriginal
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设计合同终止解除合同注意事项
- 别墅购销合同书
- 环保碳晶板采购合同
- 招标木门产品研发
- 大型建筑项目水泥砖采购合同
- 中介服务合同中的客户义务与责任
- 国外工程劳务分包合同的风险评估
- 承诺一生一世的好老公
- 样品采购合同的标准格式
- 服务外包合同协议范本案例示例
- 网络攻击应急预案演练总结报告
- 综合测试06散文阅读(多文本)-备战2025年高考语文一轮复习考点帮(新高考)(教师版)
- 【初中数学】认识方程课件++2024-2025学年北师大版七年级数学上册
- 交通运输行业火灾安全预案
- 风湿免疫性疾病-2
- 厂中厂承租方对出租方日常安全检查记录表
- 2024-2025学年高三上学期期中家长会 课件
- 消防培训课件
- 【课件】金属资源的利用和保护课件九年级化学人教版(2024)下册
- 构美-空间形态设计学习通超星期末考试答案章节答案2024年
- 第六章 数列综合测试卷(新高考专用)(学生版) 2025年高考数学一轮复习专练(新高考专用)
评论
0/150
提交评论