《指数函数与对数函数》单元课时教学设计_第1页
《指数函数与对数函数》单元课时教学设计_第2页
《指数函数与对数函数》单元课时教学设计_第3页
《指数函数与对数函数》单元课时教学设计_第4页
《指数函数与对数函数》单元课时教学设计_第5页
已阅读5页,还剩92页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教A版高中数学必修第一册

第四章指数函数与对数函数

一、单元内容和内容解析

1.内容

函数是描述客观世界中变量关系和规律的最为基本的数学语言和工具,在解决实际问题中

发挥重要作用.函数是贯穿高中数学课程的主线.

本单元的教学设计是围绕着两大基本初等函数展开,进一步理解函数模型是描述客观世界

中变量关系和规律的重要数学语言和工具.结合实际问题,体验数学模型的文化内涵,体会建

立数学模型的应用价值。通过多元化的评价,让学生感受建立数学模型的魅力.

具体来看,本章包括五节内容:4.1指数,4.2指数函数,4.3对数,4.4对数函数,4.5

函数的应用(二).这一结构体系体现了研究一个数学对象及其应用的基本思路和方法.本单元

的知识结构图如下:

本章教学约需13课时,大致分配如下:

(1)4.1指数.本节含2课时:n次方根与分数指数幕;无理数指数累及其运算性质.

(2)4.2指数函数.本节含2课时:指数函数的概念;指数函数的图象和性质.

(3)4.3对数.本节含2课时:对数函数的概念;对数的运算.

(4)4.4对数函数.本节含3个课时:对数函数的概念;对数函数的图象和性质;不同函

数增长的差异.

(5)4.5函数的应用(二).本节含4个课时:函数的零点与方程的解;用二分法求方程

的近似解;函数模型应用(1):用函数模型解决实际问题;函数模型的应用(2):选择函数

模型解决实际问题.

(6)小结.本节含2个课时:回顾4.1指数,4.2指数函数,4.3对数和4.4对数函数,

梳理其知识结构,对典型题型进一步的巩固训练;回顾4.5函数的应用(二),梳理其知识结

构,对典型题型进一步的巩固训练.

2.内容解析

(1)内容的本质:

(i)为研究指数函数,需要把整数指数累推广到实数指数累,从而为研究指数函数和对

数函数奠定基础.

(ii)指数函数是刻画呈指数增长或衰减变化规律的函数模型,是解决实际问题的重要工

具,同时,指数函数为今后学习对数函数以及等比数列的性质做准备.

(iii)对数是指数基中指数的一种等价表示形式,利用指对数互换理解并推导对数的运算

性质.

(iv)将对数函数与指数函数建立联系,体会从不同的函数模型理解同一变化规律的实际

问题,体会指数函数与对数函数互为反函数.

(v)函数的内部应用:结合函数零点的两种理解思路,二分法求方程的近似解;函数的

外部应用:函数模型的实际应用,用函数建立数学模型解决实际问题的基本过程.

(2)蕴含的数学思想和方法:

指数函数、对数函数都是学生在系统学习函数概念和掌握了函数性质基础上进行研究的,

是两个很重要的基本初等函数之一,学生需要通过观察、分析、探究等一系列的思维活动,由

具体的问题和图象进行归纳、演绎,并通过抽象概括或推理得出其本质,从而得到有关概念和

性质,其中蕴涵着丰富的数学思想方法.

具体如下:

(i)4.1指数:指数累的推广实质是将指数的范围进行逐步推广,使其对任意的实数都有

意义,推广的思想方法与数系扩充的思想基本一致,就是将优的指数x的范围逐步推广到全体

实数,而在推广过程中要使指数运算性质得到保持.在推广的过程中体现了由特殊到一般、由

具体到抽象、用有理数指数累逼近无理数指数基的极限思想,并从数和形两个角度认识到无理

数指数累是一个确定的实数,进而理解无理数指数基.

(ii)4.2指数函数:指数函数是刻画呈指数增长或衰减变化规律的函数模型,其概念的

教学,应该在函数概念的基础上,重点揭示指数增长或衰减的规律.应按“事实一概念”的路

径,即学生要经历“背景一研究对象一对应关系的本质一定义”的过程.学生在经历这个过程

而形成指数函数的概念.在了解指数函数的背景后,再描点作出指数函数的图象,从而概括指

数函数的性质.在指数函数定义和性质形成的过程中体现了抽象与概括、特殊与一般、数形结

合等思想.

(iii)4.3对数:对数是指数累中指数的一种等价表示形式,已知底数和幕,求指数,明

确引入对数的必要性,再通过指数基运算推导对数运算的性质.在研究对数的概念和对数的运

算性质时,运用了指对数互换、对数运算是指数运算的一种逆运算,以及对数的运算性质降低

了运算的级别,简化了运算,体现了化归转化的思想.

(iv)4.4对数函数:对数函数和指数函数可以从不同的角度刻画同一个问题的变化规律,

是基本初等函数的再拓广,是研究函数路径“背景一一概念一一图象与性质一一应用”的再

强化.在引入对数函数的概念上,运用了特殊到一般和数形结合的思想,从而逻辑推理出对数

函数的概念;在探究对数函数的性质时,与指数函数类似,描点作图,概括对数函数的性质,

体现了数形结合的数学思想,并体会同底的指对数函数互为反函数,进一步理解指对数运算的

互换和逆运算的思想.

(V)4.5函数的应用(二):函数的内部应用的研究路径是“函数零点的概念一一函数

零点存在定理一一应用函数零点存在定理和函数性质判定方程的解”,在函数的零点与方程的

解的转换过程中,逐步渗透化归转化思想、函数与方程思想和数形结合思想.在了解函数的零

点的两种理解思路的基础上,再探究用二分法求方程的近似解,即渗透了逼近的思想和算法思

想,又让学生经历了观察发现、抽象概括的过程,进一步强化函数与方程的思想.

函数的外部应用即函数模型的实际应用,引导学生认识“直线上升”“指数爆炸”“对数

增长”的差异,同时指导学生如何从实际情境中用数学的眼光发现和提出问题,通过分析问题、

构建模型、求解结论、验证结果,以达到分析和解决问题的能力,体现了建立函数模型解决实

际问题的数学思想,即数学建模的核心素养.

(3)知识的上下位关系:

指数函数与对数函数是两大基本初等函数之一,在高中数学课程中,《课标(2017年版)

2020年修订》把指数函数与对数函数的内容安排在必修课程“主题二函数”中,把“函数的

概念与性质”、“事函数、指数函数、对数函数”“三角函数”“函数应用”视为一个整体.从

整体上看,在学习指数函数与对数函数一章之前所学的是函数的概念与性质,这样集中安排函

数内容学习有利于函数学习经验的运用、函数知识的系统构建;从章节内部来看,教材是按照

“背景一概念一图象和性质一应用”的逻辑呈现,通过经典的年增长率和碳14的年衰减率变

化进行引入,让学生感知指数增长和指数衰减,以说明引入指数函数的必要性,在探究指数函

数的概念和图象及性质的基础上,再结合指对数互换再探究对数函数的概念和图象及性质这是

“来龙”;将抽象的知识运用到实际生活中以解决指数爆炸和对数增长的问题,这是“去脉”,

同时指数函数也是后续研究数列问题的重要载体.

具体如下:

(i)4.1指数:学生在初中阶段接触过整数指数累及其运算性质,为了研究实数指数累,

就要先定义n次方根的概念,从而得根式的性质,进而引入分数指数幕及其运算性质,合二

为一得有理数指数塞及其运算性质;无理数指数塞及其运算性质是上一节内容的延伸,从而建

立实数指数幕,并研究其运算,为指数函数且arl)的学习奠定了基础.

(ii)4.2指数函数:学生在初中阶段已经学习过增加量和增长率的相关概念,为了研究

指数增长和指数衰减模型,需先抽象概括指数函数的概念,在刻画其本质特征:在自变量增加

1个单位,即自变量从与变化到与+1时,相应的函数值之比冬季=。为常数.了解指数函数

/Uo)

模型是刻画增长率(衰减率)为定值这一变化规律的基本事实后,借助研究事函数的经验,研

究指数函数这一基本初等函数的图象和性质,从而强化指数描述的变化规律,进一步理解函数

的概念,并利用指数函数建立数学模型解决实际问题.为后续学习指对数互换,指数函数与对

数函数互为反函数提供了理论基础.

(iii)4.3对数:在器a,=N中,已知底数a和累N,求指数x,显然这种运算与指数基的

值及底数的值紧密联系,这就是要引入的对数,即指数运算的一种逆运算,从而说明引入对数

的必要性;结合指数表达与对数表达的互换,探究对数的性质,再结合指数的运算性质,探究

对数运算的性质.这为接下来要学习的对数函数打下基础.

(iv)4.4对数函数:对数函数和指数函数可以从不同角度刻画同一问题的变化规律,进

一步强化理解指对数互换的应用;对数函数的图象和性质:与指数函数类似,用对数函数的图

象探究对数函数的性质,并用所得到的性质进一步理解对数函数的图象.在了解对数函数的图

象和性质后,结合指对数互换,并建立与指数函数的图象和性质的联系,按照函数的三要素来

认识他们之间的关系,其中指数函数的定义域是对数函数的值域,指数函数的值域是对数函数

的定义域,从而理解指数函数与对数函数互为反函数;不同函数增长的差异:对比增加量和增

长率的差异,理解“指数爆炸”的含义,并结合指对数函数互为反函数,从而再理解“对数增

长”的含义,进而理解“对数增长”“直线上升”“指数爆炸”的增长差异.这部分的内容也

为后续的数学建模积累了必要的数学模型,为解决简单的实际问题做好准备.

(v)4.5函数的应用(二):前面的第二章“二次函数与一元二次方程、不等式”已经

初步建立了方程的根一方面可以理解为函数的零点,另一方面还可以理解为函数的图象与x轴

交点的横坐标,为函数的内部应用,利用所学过的函数研究一般方程的解提供了类比学习的依

据;用二分法求方程的近似解是函数与方程的延续,加强了函数的应用,拓展了方程的思想方

法.同时前面的学习的第三章“函数的应用(一)”已经初步了解了函数的实际应用(外部应

用),结合本章学习的指对数函数,可以建立实际问题的函数模型,并通过函数模型反映实际

问题的变化规律,从而分析和解决实际问题,使学生进一步理解指数函数和对数函数,学会选

择合适的函数类型刻画现实问题的变化规律.这为后续的怎样用函数构建数学模型解决实际

问题打好了基础.

(4)育人价值:

(i)4.1指数:引入一种新的数,就要研究它的运算:定义一种运算,就要研究它的运算

律.定义运算是数系扩充中的核心问题,其基本原则是“使算术运算的运算律保持不变”,它

反映了数学推广过程的一个重要特性:使得在原来的范围内成立的规律在更大的范围内仍然成

立.所以将整数指数幕推广到实数指数幕的过程体现了数学思维的严谨性、数学思想方法的前

后一致性和逻辑的连贯性,以培育学生对数学学科的严谨性的育人价值.

(ii)4.2指数函数:在引入指数函数的概念时,充分关注与实际问题的联系,体现数学

应用价值.从旅游人次的增长问题和碳14的衰减问题这两个实例引入指数函数的概念,这两

个问题,一个是增长问题,另一个是衰减问题,通过实例,有利于学生更好地感受指数函数模

型,促进学生了解中国文化、关心社会,通过实际问题渗透数学思想方法和彰显人文价值,引

导学生学会用数学的眼光观察世界、数学的思维思考世界、数学的语言(指数增长、指数衰减)

表达世界.

(iii)4.3对数:在数学发展历史上,先有对数,然后才有指数累,后来,随着数学公理

化体系的逐步完善,一般安排先学习指数幕,再学习对数,在指数幕概念及运算的基础上,引

入对数的概念及其运算,这也符合学生的认知规律,也更比较自然.另外对于自然数e不仅是

数学史上,甚至是人类科学史上最伟大的两个数(另一个是兀),以e为底的指数函数可以描

述科技、经济以及社会生活中众多增长或衰减的变化规律,体现了数学学科的实际应用的价值.

(iv)4.4对数函数:为了让学生在认识对数函数时也能感受到对数函数的实际背景,并

建立与指数函数的联系,我们从另一个角度继续研究碳14衰减的问题,让学生进一步感受其

中的函数模型.同时,还需关注与实际问题的联系,通过具体的实际问题来体现数学思想方法

和价值,体现了数学应用的价值.同时也能充分发挥对数在培养学生的数学抽象、逻辑推理、

数学运算和数学建模等核心素养的作用.

(v)4.5函数的应用(二):函数的内部应用,侧重于函数与方程的互相关系,突出用

函数性质求方程近似解的基本方法(二分法),帮助学生从函数的观点认识方程,了解用二分

法求方程近似解的思路、步骤和算法,提升数学运算素养;函数的外部应用,侧重于用函数构

建数学模型的基本过程,突出用“指数型”函数和“对数型”函数模型发现和提出问题的能力、

分析和解决问题的过程和方法,意在从现实背景体现函数的应用价值.

(5)教学重点:

(i)4.1指数:指数累的推广,指数事的运算性质.

(ii)4.2指数函数:指数函数的概念的形成,指数函数描述的变化规律;指数函数的图

象和性质.

(iii)4.3对数:对数式与指数式的互换以及对数的性质;对数的运算性质.

(iv)4.4对数函数:对数函数的概念、图象和性质.

(v)4.5函数的应用(二):函数的零点与方程的解、函数的图象与x轴交点的横坐标之

间的联系,函数零点存在定理以及用二分法求方程的近似解的思路与步骤;选择合适的函数类

型构建数学模型,体会建立数学模型解决实际问题的一般过程.

(6)课时教学安排:

在单元教学设计中应注重局部范围内的知识系统化特征,在教学整体观的指导下,将教学

诸要素有序化规划,以优化教学效果,并有利于学生构建条理清楚、层次分明的整体认知结构.

“4.1指数”一节,包含的内容有:n次方根与分数指数累,无理数指数累及其运算性质.

其中n次方根与分数指数暴包括了n次方根的定义、根式的定义、根式的性质、正数的分数指

数幕的意义及其运算性质,无理数指数塞及其运算性质包括了无理数指数累是一个确定的实数、

无理数指数的运算性质.这些内容在教科书中呈现的顺序是:n次方根的定义一根式的定义一

根式的性质一例1—正数的正分数指数事的意义一正数的负分数指数易的意义一正数的分数

指数基的运算性质一例2、例3、例4和练习一正数的无理数指数累是一个确定的实数一正数

的无理数指数累的运算性质一练习.把这些内容作为一个单位,可以得到如下框图.

根据上面的框图,可以对单元内容进行划分,同时给出课时:

第一部分:n次方根与分数指数累(1课时)

第二部分:无理数指数幕及其运算性质(1课时)

“4.2指数函数”一节,包含的内容有:指数函数的概念,指数函数的图象和性质.这些

内容在教科书中呈现的顺序是:问题1(游客人次逐年增长问题)一指数增长(增长率为定值)

一问题2(碳14衰减问题和半衰期的概念)一指数衰减(衰减率为定值)一指数函数的概念

一例1、例2和练习一阅读材料(倍增期的概念)一描点画指数函数y=2、的图象一探究画指

数函数y的图象一探究选取底数”(〃>0且awl)的若干个不同的值的指数函数图象一归纳

出指数函数y=/(a>()且awl)的图象一概括出指数函数),=优(。>0且"1)的性质一例3、例4

和练习一信息技术应用(探究指数函数的性质).把这些内容作为一个单元,可以得到如下框

图.

根据上面的框图,可以对单元内容进行划分,同时给出课时:

第一部分:指数函数的概念(1课时)

第二部分:指数函数的图象和性质(1课时)

“4.3对数”一节,包含的内容有:对数的概念,对数的运算性质.这些内容在教科书中

呈现的顺序是:已知底数和嘉的值求指数一对数的概念一对数的符号一常用对数(自然对数)

一指对数互换一对数的性质一例1、例2和练习一对数的运算性质一例3、例4一换底公式一

例5和练习一阅读与思考(对数的发明).把这些内容作为一个单元,可以得到如下框图.

根据上面的框图,可以对单元内容进行划分,同时给出课时:

第一部分:对数的概念(1课时)

第二部分:对数的运算性质(1课时)

“4.4对数函数”包含的内容有:对数函数的概念,对数函数的图象和性质.这些内容在

教科书中呈现的顺序是:思考(死亡时间x是否为碳14含量y的函数)一逻辑推理出对数式

x=log"、“『y,yG(0,l]满足函数的定义一对数函数的概念一例1(概念应用)、例2(模型应用)

一练习(强化概念,理解模型)一描点画对数函数y=bg2x的图象一探究画对数函数>

的图象一探究选取底数。(a>0且af1)的若干个不同的值的对数函数图象一归纳出对数函数

y=k)g“x(a>0且awl)的图象一概括出对数函数y=log“>。且。WD的性质一例3、例4一指对

数函数互为反函数一练习一探究与发现(互为反函数的两个函数图象间的关系)一指数函数与

线性函数增长差异一对数函数与线性函数的增长差异一“直线上升"''对数增长”“指数爆炸”

的含义一练习.把这些内容作为一个单元,可以得到如下框图.

根据上面的框图,可以对单元内容进行划分,同时给出课时:

第一部分:对数函数的概念(1课时)

第二部分:对数函数的图象和性质(1课时)

第三部分:不同函数增长的差异(1课时)

“4.5函数的应用(二)”包含的内容有:函数的零点与方程的解,用二分法求方程的近

似解,函数模型的应用.这些内容在教科书中呈现的顺序是:函数的零点一函数零点存在定理

一例1、练习一二分法求方程的近似解一例2、练习一阅读与理解(中外历史上的方程求解)

一例3(指数增长模型)一例4(指数衰减模型)一练习(指数与对数互换)一例5、例6(对

数增长、直线上升、指数爆炸)一练习.把这些内容作为一个单元,可以得到如下框图.

根据上面的框图,可以对单元内容进行划分,同时给出课时:

第一部分:函数的零点与方程的解(1课时)

第二部分:用二分法求方程的近似解(1课时)

第三部分:函数模型的应用(二)(1):用函数模型解决实际问题(1课时)

第四部分:函数模型的应用(二)(2):选择函数模型解决实际问题(1课时)

二、单元目标和目标解析

1.目标

第1课时:〃次方根与分数指数幕

(1)理解〃次方根与根式的概念;掌握分数指数罐和根式之间的互化;

(2)掌握分数指数嘉的运算性质;

第2课时:无理数指数累及其运算性质

(1)通过“用有理数逼近无理数”求得无理数的近似值;

(2)掌握运用实数指数基运算性质进行化简计算的方法.

第3课时:指数函数的概念

(1)通过实际问题提炼出指数函数的概念;

(2)理解指数函数中底数的取值范围;

第4课时:指数函数的图象和性质

(1)运用描点法画出指数函数的图象,运用图象来研究指数函数的性质;

(2)能通过数形结合,解决定点、单调性等问题;

第5课时:对数的概念

(1)理解对数的概念,了解对数运算与指数运算的互逆关系,及常用对数与自然对数;

(2)掌握对数式和指数式的互化,发展数学运算素养.

第6课时:对数的运算

(1)通过指数愚的运算性质推导出对数的运算性质;

(2)掌握对数换底公式,能够用换底公式化简问题;

第7课时:对数函数的概念

(1)理解对数函数的概念,理解对数函数与指数函数的关系;

(2)能通过指数函数底数取值范围的要求,归纳出对数函数的底数的取值范围.

第8课时:对数函数的图象和性质

(1)经历用类比的方法画出对数函数的图象,归纳出对数函数的性质;

(2)掌握对数函数的图象与性质,初步学会用对数函数的性质解决简单的问题;理解反

函数的概念.

第9课时:不同函数增长的差异

(1)结合具体的函数图象,总结一次函数、指数函数、对数函数的增长差异.

(2)通过图象,了解“直线上升”“对数增长”“指数爆炸”的含义.

第10课时:函数的零点与方程的解

(1)了解函数零点的概念;能够结合具体的方程(如一元二次方程),说明方程的根、

函数零点、函数图象与x轴的交点三着之间的关系;

(2)理解函数零点存在定理;了解函数图象连续不断的意义及作用,知道函数零点存在

定理只是函数存在零点的一个充分条件,了解函数零点可能不止一个;

(3)能利用函数图象和性质判断某些函数的零点的个数,及所在区间.

第11课时:用二分法求方程的近似解

(1)通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用

方法;

(2)能借助计算工具、信息技术用二分法求方程的近似解,从中体会函数与方程之间的

联系及其在实际问题中的应用;

(3)通过让学生概括二分法的思想和步骤,培养学生的归纳概括能力,培养学生探究问

题的能力、严谨的科学态度和创新能力.

第12课时:函数模型的应用(二)(1):用函数模型解决实际问题

(1)会通过具体的函数模型分析实际问题;

(2)能够对问题进行分析,建立合适的数学模型,并对不同数学模型的契合度进行比较,

择优选择。

第13课时:函数模型的应用(二)(2):选择函数模型解决实际问题

(1)能将具体的实际问题化归为函数问题;

(2)能通过分析函数图象及表格数据了解相应的对数函数、线性函数、指数函数的变化

差异,正确选择合适的函数模型解决实际问题,提升数学抽象、数学建模等素养.

2.目标解析

4.1指数(〃次方根与分数指数累,无理数指数累及其运算性质)

达成上述目标的标志是:

(1)理解〃次方根的概念及其性质;通过探究得到质的性质;理解〃次方根与分数指

数毒的关系;掌握有理数指数幕的运算性质;通过“用有理数指数幕逼近无理数指数幕”思想

了解无理数指数累,体会其中的极限思想;

(2)通过具体的实例的归纳,由具体到抽象,由特殊到一般,理解分数指数事与〃次方

根的关系:分数指数幕是n次方根的一种表示形式,两者是统一的.通过根式与分数指数累的

互化,巩固、加深对于根式和分数指数募的理解;

(3)通过类比教材中的模式,观察5夜的不足近似值和过剩近似值,进一步巩固无理数指

数塞的概念,提升学生的逻辑推理和数学运算素养;

4.2指数函数(指数函数的概念,指数函数的图象和性质)

达成上述目标的标志是:

(1)能结合教科书中游客增长的问题1和碳14衰减的问题2,通过运算发现其中具体的

增长或衰减的规律,并从中体会实际问题中的变量间的关系.在了解指数函数的实际意义的基

础上,知道指数函数的含义和表示,清楚其定义域和底数。的取值范围;

(2)能根据函数解析式或利用计算工具计算出指数函数的两个变量的一些对应值并列表,

然后描点或利用信息技术画出指数函数的图象,或能根据函数解析式直接利用信息技术画出指

数函数的图象;结合函数图象,归纳这些图象的共同特征,探索并总结指数函数的单调性与特

殊点,并结合函数解析式验证所总结的函数单调性和特殊点;

(3)结合指数函数的教学,体会"概念-图象-性质”的研究具体函数的一般思路;在由

具体实例抽象为具体函数、再由具体函数概括为指数函数的过程,提升数学抽象素养;结合由

函数图象直观认识函数性质的过程,体会数形结合的思想方法,提升直观想象素养.

4.3对数(对数的概念,对数的运算)

达成上述目标的标志是:

(1)通过与指数式比较,掌握对数概念及其性质的过程,培养学生归纳能力,提升数学

抽象核心素养;

(2)探究对数运算性质,体会“归纳-猜想-证明”是数学中发现结论、证明结论的完整

思维方法,让学生体会回到最原始(定义)的地方是解决数学问题的有效策略.能通过例题与

习题的解答,巩固所学的对数运算性质,通过运算能力,体会对数的实际运用,提升数学运算

素养.

4.4对数函数(对数函数的概念,对数函数的图象和性质,不同函数增长的差异)

达成上述目标的标志是:

(1)从另一个角度继续研究教科书中碳14衰减的问题,不仅得到对数函数的概念,还能

通过与指数函数的联系更好地理解对数函数;

(2)学生类比研究指数函数图象和性质的过程和方法,探究对数函数的图象和性质;将

对数函数y=分为。>1和0<。<1两类进行归纳,体会数形结合的思想方法;

(3)学生能知道同底的指数函数与对数函数互为反函数,了解二者的定义域与值域的关

系;

(4)通过探究指数函数与一次函数的增长的差异,对数函数与一次函数的增长差异,理

解“对数增长”“直线上升”“指数爆炸”的含义.

4.5函数的应用(二)(函数的零点与方程的解,用二分法求方程的近似解,函数模型的

应用)

达成上述目标的标志是:

(1)理解函数零点的概念;通过“探究”观察对应的二次函数在区间端点上的函数值

之积的特点,导出连续函数在某个区间上存在零点的判定方法.能通过例1的教学,引导学生

借助函数性质研究函数在某个区间是否存在零点,理解函数零点存在定理;能通过例2的教学

继续探索用二分法求方程近似解的思路,体会用二分法求方程近似解的一般过程与思想方法;

(2)能明确教科书例3、4中的数量关系,能利用已知函数模型进行计算求解,从而解

决实际问题;能明确教科书例5中的数量关系,指出每个方案的函数模型,为将实际问题抽象

为数学问题并化归为函数模型作准备;

(3)能从教科书中的例题条件出发,根据“对数增长”“直线上升”“指数爆炸”的

含义,数形结合地辨别三种函数的增长差异,从而选择不同的函数模型;

(4)在选择或建立函数模型解决实际问题的过程中,围绕“是什么数学问题”“选什

么函数模型”“为什么要选某个函数模型”“怎么解答实际问题”,提升学生的数学抽象和数

学建模素养.

三、单元教学问题诊断分析

指数函数和对数函数是两类重要的基本函数.在第三章“函数的概念和性质”中研究函数

的一般方法的指引下,本大单元让学生借助研究基函数的经验,学习这两类新的重要的基本初

等函数一一指数函数和对数函数,认识它们的变化规律,进一步理解函数的概念,并利用这两

类函数建立数学模型解决实际问题.以下针对本大单元的教学问题诊断的分析做具体地阐述:

1.问题诊断

(1)4.1指数

学生在初中阶段经历了从正整数指数幕到整数指数幕的推广过程,已经学习了整数指数幕

及其运算性质,积累了一定的数系扩充经验,为本单元的学习奠定了一定的基础.但学生往往

把注意力集中在具体运算上,对数系扩充的原则、指数幕的含义和运算性质等缺乏必要的关注,

而本单元的内容主要是“定规则”,着力点在指数事优指数x的范围扩充后的意义,不仅抽象

而且逻辑性强,所以存在较大困难.

首先,学生不清楚从整数指数毒到有理数指数哥推广的整体架构,这样他们对从哪里入手

推广、按怎样的逻辑顺序展开,每个环节如何实施才能做到逻辑严谨等都会比较茫然.也就是

说,学生对该做什么和如何做都不太清楚,从而造成被动学习.为了解决这个困难,教学中要

引导学生回顾从有理数到实数(主要是平方根和立方根)、正整数指数累到整数指数易的推广

过程,通过适当的讲解,为学生搭建适当的脚手架,使他们在适当的类比对象下展开学习,从

而增强学习的主动性.

其次,从根式的意义到有理数指数幕的含义的理解,其中涉及数学符号表达方式的转换,

转换要满足等价性,其抽象性、逻辑性都很强,需要较强的代数思维和逻辑推理能力,这对学

生具有挑战性.教学中要注意通过类比数系的扩充过程(特别是从整数到分数的扩充过程,先

引入分数单位,再定义分数的意义,然后研究分数的性质和运算等过程),通过具体实例引导

学生理解定义/二旧7的合理性,并按照教学定义的完备性要求,给出完整的有理数指数幕

的定义,从而建立起理解有理数指数辱含义的基础.

第三,因为学生的运算技能、代数思维等方面的欠缺,他们在进行根式,有理数指数累的

运算等过程中,经常会出现错误.教学中要注意发挥这个内容在提升学生数学运算素养上的作

用,让学生充分经历从具体实例到运算法则的归纳过程,使他们在理解根式的意义、有理数指

数幕的含义基础上,通过适当的从根式到分数指数幕的解题训练,形成较好的运算技能.

第四,无理数指数惠的含义涉及数列的极限,具有构造性,也是本单元的一个学习难点.教

学时要注意借鉴初中阶段用有理数夹逼无理数的经验,通过信息技术手段提供直观理解的支持,

帮助学生更好地体验无理数指数基的唯一确定性.

(2)4.2指数函数

由具体实例抽象出指数函数的概念,不仅要能想到将问题1游客人次的变化用图象直观表

示,还要能结合图象对已知数据进行运算后发现变化规律,并能根据问题1和问题2得到的两

个解析式概括出统一的函数关系式丫=。'(。>0且awl).这些对学生思维能力的要求较高.教学

中,要给学生探索和发现的机会,并给予学生恰当的指导.在学生不能从问题1的数据中发现

游客人次的变化规律时,要多引导学生先根据已知数据作出图象进行观察,然后启发学生对已

知数据进行运算,通过运算得到每年与上年旅游人次的比例为常数,从而结合图象发现变化规

律的本质.这里,对数据进行哪些运算才有利于发现规律,是学生已有知识经验中缺乏的,教

学中多引导学生注意“增加量”“增长率”的作用的强调.再引导学生分析问题2的碳14衰

减问题,进而引导学生发现概括出指数函数的概念,体会概念形成的过程.概念形成后,先让

学生观察其定义域的范围;再抛出问题,引导学生结合定义域分析对底数。有何要求,最后通

过习题来强化学生对指数函数概念的理解.

在指数函数性质的学习过程中,尽管学生已经经历过暴函数性质的学习,但那是在给定的

五个具体的函数基础上进行不完整、不系统的归纳,而且嘉函数性质的学习自行选择具体的函

数,必要时教师可引导学生利用信息技术进行探索,通过画出底数。取大量不同值时的图象,

发现并归纳函数的单调性;在探索的基础上将大量所做的图象分为增长和衰减两类,利用信息

技术分别研究两类图象函数值的变化,从而归纳。〉1时函数单调增,0<。<1时函数单调减.

(3)4.3对数

首先,学生难以理解对数与指数符号之间的关系,在应用对数概念进行运算时,会出现符

号混乱的现象.这就要求教师在教学时首先要让学生清楚指数式中哪个是指数,哪个是底数,

再思考对数式中真数是指数式中的哪部分,避免当题目换成其它字母时,学生就不清楚该如何

进行指对互化,其次对于对数的性质及零和负数没有对数的理解,教师要引导学生思考,引导

学生与指数式进行联系,并加以证明.

其次,熟悉对数运算法则,可以先类比指数运算法则对照记忆,然后再强化法则使用的条

件,提醒学生注意对数式中每个字母的取值范围,最后还要让学生认清对数运算法则可使高一

级的运算转化为低一级的运算,从而简化计算方法,加快运算速度,显示对数计算的优越性.

(4)4.4对数函数

对数函数是高中阶段学生学习的第三个基本初等函数,学生已经具备了较好的函数认知基

础,且对函数的认识已达到抽象概括阶段(高中及以后),能脱离具体和直观对象,进行抽象

化、符号化的概括与操作,即“集合对应说”.为帮助学生理解对数函数的概念,可从具体的

指数函数模型出发,例如,在碳14衰减问题中,由指数和对数的关系,容易根据死亡生物体

内碳14残留量y经运算推理得到生物死亡时间x的关系式,但是反过来考虑,生物死亡时间x

是否为死亡生物体内碳14残留量y的一个函数呢?从而引出函数的三要素,引导学生发现数

集AB的取值集合.为了说明函数的“集合对应说”,可引导学生画函数

y=J-,xe[0,+8)的图象,利用信息技术中的PPT的动态演示,一方面说明动直线y=%

取满了"«0,1],另一方面说明图象与动直线始终有唯一交点.由动态图展示让学生很容易理

解》=108曲,),,》«0,1]是满足函数定义的任意性和唯一性这两个关键要求.

V2

为了突破对数函数图象的性质,同指数函数一样,通过信息技术辅助画出底数〃取大量不

同值时的图象,发现并归纳函数的单调性;在探索的基础上将大量所做的图象分为对数增长和

对数减小两类,利用信息技术分别研究两类图象函数值的变化,从而归纳。>1时函数单调增,

0<4<1时函数单调减.

另外为了让学生形象直观的感受“指数爆炸”“直线上升”“对数增长”这些术语的含

义,可各个击破,具体操作如下:先将指数函数与一次函数的增长作差异对比,借助信息技术

的作图软件,逐步调节单位1的长度,学生直观感受这两个函数的增长差异越来越明显,这正

说明了指数函数的增长由慢变快且越来越快的爆炸性增长的特点;再将对数函数与一次函数的

增长作差异对比,同样地,借助信息技术的作图软件,逐步调节单位1的长度,学生亦能直观

感受这两个函数的增长差异越来越明显,这也正说明了对数函数的增长由快变慢且越来越慢的

对数增长的特点.

(5)4.5函数的应用(二)

函数的内部应用,函数的零点的定义直接类比二次函数零点的定义,没有必要作多余的解

释,结合具体的函数,推导出一般函数零点的概念并得到相应结论.对于函数零点存在定理的

导出,可结合具体的二次函数的零点(变号零点)附近处,结合数形结合发现有下面结论:/(x)

穿过x轴=/(a)/(b)<0,然后要求学生利用这一结论尽可能多地画出函数/(x)的图象,不妨令

/⑷<0,/俗)>0时,画/(x)的图象,结合学生的作图情况可以发现此时/(X)有零点(可以不止

一个),从而形成函数零点存在定理.接下来,就是理解定理了,引导学生充分抓住定理中的

关键信息:“连续”、和“至少有一个”,对于前两个关键词,教师需要求学

生自己亲自动手尝试画出“不连续”、"/(.)/b)>0”的图象情况,从而了解到零点存在定理

是函数有零点的充分条件,而非必要条件.对于最后一个关键词,可以结合前面定理的导出时,

学生的作图情况以及教师适当的补充,充分理解函数零点存在定理无法准确判断零点的个数问

题.对于零点的个数问题,教师需利用好“例1”的教学,引导学生的发现单调性的加入可以

间接判断函数零点的个数,从而形成零点存在且唯一定理.值得注意的是,同样地,函数零点

存在且唯一定理也是函数有唯一零点的充分条件,而非必要条件.

用二分法求方程的近似解的难点是二分法的原理和思路,以及算法思想.为突破二分法的

原理,可引导学生作图,直观感受“穿根”和“不穿根”在图象上的区别,进而转化为数学语

言,即代数式上的差异,明确“穿根”才可以使用二分法.对于二分法思路的突破,可按照“求

方程近似解一一求函数的零点一一缩小区间逼近零点一一二分法”的过程展开,重中之中就是

如何缩小区间,反复检验端点的函数值是否异号,如此一来,自然会涉及到算法的优化,所以

需要程序化来体现算法思想,让学生通过二分法的学习,体会按照明确步骤解决问题的重要性.

函数的外部应用,首先,学生在此之前已经结合实例学习了几类函数的概念、图象和性质,

并应用它们解决学科内的一些问题和一些简单的实际问题.但是面对较复杂的实际问题,如何

将其转化为数学问题,特别是如何选择函数模型来刻画实际问题,大多数学生既缺乏这方面的

经验,也缺乏数学抽象的能力,以及对不同函数模型增长差异的深刻认识.教学时可以多从以

下两方面帮助学生克服困难:一是根据实际问题的条件建立等量关系,从而将实际问题抽象为

数学问题;二是从数和形出发,定性和定量地分析实际问题的变化规律,从而选择合适的函数

模型;其次,在利用函数模型解决问题的过程中,大多数学生还没有养成利用信息技术根据函

数模型进行运算求解的良好习惯.在教学中,可以鼓励学生使用信息技术进行复杂的运算求解,

画图列表,多元联系地表示数学对象并分析问题,从而逐步形成利用信息技术研究实际问题的

意识.

2.教学难点

(1)4.1指数:建立指数累的推广的整体架构;根式性质的理解;分数指数幕的理解、

有理数指数募的运算性质及用有理数指数幕逼近无理数指数毒.

(2)4.2指数函数:指数函数概念的形成过程,将实际问题转化为数学模型;描点法画指

数函数图象,并抽象概括出指数函数的单调性.

(3)4.3对数:对数概念的理解,指对数互换;利用指数的运算性质推导出对数的运算

性质和换底公式.

(4)4.4对数函数:对数函数概念形成的逻辑推理;对数函数性质的归纳;对“指数爆

炸”“直线上升”“对数增长”的理解

(5)4.5函数的应用(二):函数的内部应用,函数零点存在定理的导出和定理中的关

键词的理解,用二分法求方程的近似解的思路和算法;函数的外部应用,用函数建立数学模型

解决实际问题的基本过程.

四、教学支持条件分析

(1)4.1指数:

通过计算工具计算、展示及,5无等的不足近似值和过剩近似值夹逼血,50的过程,并利

用几何画板在数轴上进行动态演示“不足近似值”和“过剩近似值”的对应点,发现这些点逼

近一个确定的点,其对应的数就是这个无理数指数基.由此让学生学会其中的极限思想,并从

数和形两个角度认识到5&是一个确定的实数,进而理解无理数指数累.

(2)4.2指数函数:

利用信息技术中的Excle、函数作图等软件工具进行计算、列表和作图,以便于多元联系

地表示指数函数,帮助学生克服学习中可能遇到的困难,更好地理解指数函数的概念和性质.

在指数函数的概念的教学中,利用信息技术可以很方便地将问题1中表格的数据转化为图象,

由图象直观地发现旅游人次的整体变化情况;然后利用信息技术对这些数据进行计算,通过计

算揭示图象蕴含的变化规律的本质.在指数函数图象和性质的教学中,利用信息技术可以进行

多种方式的研究,比如任意作出大量需要的函数图象,通过观察图象归纳出不同图象的共同特

征,进而抽象出函数的性质;又如建立函数的图象和数表的联系,通过跟踪图象上的点,数形

结合地发现函数的图象特征和性质.

(3)4.3对数:

在说明自然对数e的时候,可以利用信息技术中Excle计算当«=1,2,3,10,100,1000,10000,

100000,…时,对应的+的值,从而发现其数值增长越来越慢.同时结合信息技术中几何

画板作出函数y=图象,直观感受这一变化规律,同时还发现当+8时,fl+4'

->定值,从而引入自然对数e.

(4)4.4对数函数:

在说明x=log^y,ye(0,l]是满足x是关于y的一个函数时,应当充分利用信息技术中的

PPT的动态演示功能,在画出函数y=[0,yo)的图象后,一方面要说明动直线

取满了乂另一方面还要说明图象始终与动直线有唯一交点.由动态图展示让学生很容

易理解X=10gs“而是满足函数定义的任意性和唯一性这两个关键要求.

在描点画对数函数图象时,为了便于概括对数函数的性质,可以结合信息技术中的几何画

板来处理.一方面,计算函数y=k)g2x的自变量取值及其对应的函数值并列表,然后将所得有

序实数对描点并画出函数的图象,同理,作出函数y=log,x的图象,跟踪函数y=log2X图象上

2

的点,观察这些点关于X对称的点,发现所有的对称点均在函数y=log〃的图象上,并由相互

对称的点的坐标关系分析函数y=1。82工与y=log,x的关系;另一方面,在同一平面直角坐标系

2

内画出。取任意值时函数y=log〃x的大量图象,可以设置。的取值,然后通过控制。的连续变

化展示对应函数图象的分布情况;还可以逐个地取。的值,然后分别作出对应函数的图象.

对于同底的指对数函数互为反函数的教学,同样可以结合几何画板来处理,在同一直角坐

标系中,画出指数函数y=2*和对数函数y=log2X,跟踪函数y=2,图象上的点,观察这些点关

于y=x对称的点,发现所有的对称点均在函数y=1。心》的图象上;同理,再选取底数为3、4

等的指对数函数,仍发现有同样的结论.由此归纳出指数函数y=a'和对数函数y=log“x关于

y=x对称,即互为反函数,最后再通过控制a的连续变化检验这两个函数图象的对称情况.

在不同函数增长的差异一节中,信息技术起到至关重要的作用,可考虑从数和形这两个不

同的角度分别体会函数的增长差异.通过Excel中表格的数据和作图功能的图象,以数形相结

合体现各个具体函数之间增长变化的差异.另外,还可以设置a,b,z的取值,利用几何画板中的

控制按钮控制的连续变化展示对应函数),=优,丫=1物2=丘的图象的增长变化情况,以

说明参数的大小不影响函数间的增长速度的快慢,从而准确地理解“指数爆炸”“直线上升”

“对数增长”术语的含义.

(5)4.5函数的应用(二)

函数的内部应用,研究函数的零点问题的一种主要的思想方法就是数形结合,探究途径是

特殊到一般,在教学过程中需要利用GeoGebra,Excel,图形计算器等统计软件来处理数据,画

出函数图象.在二分法的教学中,可融入信息技术,突出它的作用:一是利用信息技术作出函

数图象,帮助学生直观地确定函数零点所在区间;二是信息技术为学习二分法提供了快速计算

的工具,有助于提高运算的效率,减少人为重复的运算;三是信息技术为学习二分法提供了验

证的工具,有助于检验结论的正确性.

函数的外部应用,为了帮助学生克服选择实际问题的函数模型,并利用所得函数模型解决

问题的困难,教学时应用充分利用信息技术的计算、作图、列表等功能,处理实际数据、便捷

地求解,让学生将主要精力投入到定性和定量地分析问题上,针对不同函数模型动态地研究其

变化规律.

五、课时教学设计

第1课时

1.课时教学内容

4.1.1n次方根与分数指数累

2.课时教学目标

(1)理解〃次方根与根式的概念,掌握分数指数累和根式之间的互化;

(2)掌握分数指数幕的运算性质.

3.教学重点与难点

重点:根式的概念;分数指数易的概念;掌握并运用分数指数暴运算性质;

难点:建立指数幕的推广的整体架构;根式性质的理解;有理数指数事的运算性质.

4.教学设计

教教学内容师生互动设计意图

引1、71次方根式教师通过

入【温故】我们知道,如果尤2=%那么尤叫做a的平方根.例如,±2就引导学生复习方

新是4的平方根.如果/=a>那么x叫做a的立方根.如2就是8的立方根.类比平方根,导出

课类似地,由于(土2尸=16,我们把±2叫做16的4次方根.根、立方本节课的

【知新】一般地,如果/=a,那么%叫做a的几次方根,其中,n根的概研究对

>1,且11£1^*念,自主象,使学

得出n次生明确学

方根的概习目标,

念并利用之

前学习形

成的思维

习惯,引

导学生进

一步观

察、研究

新2、ri次方根的性质类比通过

课(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是平方根和熟悉的特

探一个负数.这时,a的n次方根用符号版表示.立方根从例,加强

究例如牛32=2,V-32=-2,Va6=az.n为偶数对根式的

和n为奇理解,引

(2)当n是偶数时,正数的n次方根有两个,这两个数互为相反数.数两个方导形成根

这时,正数a的n次方根用孤表示,负的n次方根用-班表面讨论n式的相关

示.两者也可以合并成土质.次方根的性质.

例如16的4次方根有两个,分别是:石=2和—V访=一2.性质.

(3)负数没有偶次方根.

(4)0的任何次方根都是0,记作9=0.

3、根式

式子班叫做根式,其中n叫做根指数,a叫做被开方数.

【思考】观察(诙)”和

府,你认为他们所代表的的含义是等价的吗?为什么?

(Va)?l=a如:(石>=5,(V4)6=4

(次/=2,(g)5=-3

nr-a..fa,n为奇数

1一珥n为偶数

如:V?=2,^(-3)5=-3,海=0

泞=2,,(-3)6=3,海=0

通过

例1求下列各式的值:从具分n为奇

⑴〃一8尸;(2)J(—10)2;体的例子数和偶数

(3)V(3-7i)4;(4)J(a—b)2总结府两种情况

和(眄然讨论,进

的本质,一步理解

从而得出n次方根

辨析结果的概念,

4、分数指数黑结论形成严谨

【探究】根据〃次方根的定义和运算,我们知道Wa1°=)(。2)5=。2=的分类思

aJ(a>0)想,提升

逻辑推理

Va12=^/(a3)4=a3=a~^(a>0)

学生的核心素

即当根式的被开方数(看成寡的形式)的指数能被根指数整除时,根式

自主完成养

可以表示成分数指数寨的形式.

后老师请

【思考】当根式的被开方数的指数不能被根指数整除时,根式是否也能表示为分

学生口述

数指数箱的形式?

解题过程

事实上,任何一个根式都可以表示为分数指数呆的形式,例如:

or2__14/5通过练

Va2=a3(a>0),4b=成(b>0),Vc^=cl(c>0).

___m习,巩固

一般地,冒布

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论