2024届浙江省宁波市外国语学校八年级数学第一学期期末达标检测模拟试题含解析_第1页
2024届浙江省宁波市外国语学校八年级数学第一学期期末达标检测模拟试题含解析_第2页
2024届浙江省宁波市外国语学校八年级数学第一学期期末达标检测模拟试题含解析_第3页
2024届浙江省宁波市外国语学校八年级数学第一学期期末达标检测模拟试题含解析_第4页
2024届浙江省宁波市外国语学校八年级数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省宁波市外国语学校八年级数学第一学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图所示,在中,内角与外角的平分线相交于点,,交于,交于,连接、,下列结论:①;②;③垂直平分;④.其中正确的是()A.①②④ B.①③④ C.②③④ D.①③2.如图,已知∠1=∠2,若用“SAS”证明△ACB≌△BDA,还需加上条件()A.AD=BC B.BD=AC C.∠D=∠C D.OA=OB3.如图点按的顺序在边长为1的正方形边上运动,是边上的中点.设点经过的路程为自变量,的面积为,则函数的大致图象是().A. B. C. D.4.若等腰三角形的周长为17cm,其中一边长为7cm,则该等腰三角形的底边长为()A.3cmB.3cm或5cmC.3cm或7cmD.7cm5.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A. B.5 C.6 D.86.如图,在中,,,点、分别在边、上,,点是边上一动点,当的值最小时,,则为()A. B. C. D.7.如图,直线l1:y=ax+b和l2:y=bx﹣a在同一坐标系中的图象大致是()A. B.C. D.8.下列计算正确的是()A.a2+a3=a5 B.(a2)3=a6 C.a6÷a2=a3 D.2a×3a=6a9.下列命题为假命题的是()A.三角形三个内角的和等于180°B.三角形两边之和大于第三边C.三角形的面积等于一条边的长与该边上的高的乘积的一半D.同位角相等10.一辆客车从甲地开住乙地,一辆出租车从乙地开往甲地,两车同时出发,两车距甲地的距离y(千米)与行驶时间式(小时)之间的函数图象如图所示,则下列说法中错误的是()A.客车比出租车晚4小时到达目的地 B.客车速度为60千米时,出租车速度为100千米/时C.两车出发后3.75小时相遇 D.两车相遇时客车距乙地还有225千米11.某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.512.下列运算正确的是()A.=±4 B.(ab2)3=a3b6C.a6÷a2=a3 D.(a﹣b)2=a2﹣b2二、填空题(每题4分,共24分)13.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=.14.如图,与是两个全等的等边三角形,.有下列四个结论:①;②;③直线垂直平分线段;④四边形是轴对称图形.其中正确的结论有_____.(把正确结论的序号填在横线上)15.如图,,若,则的度数是__________.16.如图,一个密封的圆柱形油罐底面圆的周长是10m,高为13m,一只壁虎在距底面1m的A处,C处有食物,壁虎沿油罐的外侧面爬行到C处捕食,它爬行的最短路线长为_____m.17.如图,正比例函数y=2x的图象与一次函数y=-3x+k的图象相交于点P(1,m),则两条直线与x轴围成的三角形的面积为_______.18.的平方根是.三、解答题(共78分)19.(8分)共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?20.(8分)如图,,,为中点(1)若,求的周长和面积.(2)若,求的面积.21.(8分)如图,已知△ABC,∠C=90°,AC<BC,D为BC上一点,且到A、B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=32°,求∠CAD的度数.22.(10分)因式分解:(1);(2)23.(10分)我们定义:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,4,,因为,所以这个三角形是奇异三角形.(1)根据定义:“等边三角形是奇异三角形”这个命题是______命题(填“真”或“假命题”);(2)在中,,,,,且,若是奇异三角形,求;(3)如图,以为斜边分别在的两侧作直角三角形,且,若四边形内存在点,使得,.①求证:是奇异三角形;②当是直角三角形时,求的度数.24.(10分)如图,是的外角的平分线,且交的延长线于点.(1)若,,求的度数;(2)请你写出、、三个角之间存在的等量关系,并写出证明过程.25.(12分)如图,点在线段上,,,,是的中点.(1)求证:;(2)若,,求的度数.26.(1)求式中x的值:;(2)计算:

参考答案一、选择题(每题4分,共48分)1、B【分析】①根据角平分线的性质和外角的性质即可得到结论;

②根据角平分线的性质和三角形的面积公式即可求出结论;

③根据线段垂直平分线的性质即可得结果;

④根据角平分线的性质和平行线的性质即可得到结果.【详解】①,②∵AP平分∠BAC,∴P到AC,AB的距离相等,∴,故错误.③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一),④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,∴∠DCP=∠FCP,又∵PG∥AD,∴∠FPC=∠DCP,∴.故①③④正确.故选B.【点睛】考查角平分线的性质,线段垂直平分线的性质,综合性比较强,难度较大.2、B【分析】根据SAS是指两边及夹角相等进行解答即可.【详解】解:已知∠1=∠2,AB=AB,根据SAS判定定理可知需添加BD=AC,故选B【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3、C【分析】分类讨论,分别表示出点P位于线段AB上、点P位于线段BC上、点P位于线段MC上时对应的的面积,判断函数图像,选出正确答案即可.【详解】由点M是CD中点可得:CM=,(1)如图:当点P位于线段AB上时,即0≤x≤1时,y==x;(2)如图:当点P位于线段BC上时,即1<x≤2时,BP=x-1,CP=2-x,y===;(3)如图:当点P位于线段MC上时,即2<x≤时,MP=,y===.综上所述:.根据一次函数的解析式判断一次函数的图像,只有C选项与解析式相符.故选:C.【点睛】本题主要考查一次函数的实际应用,分类讨论,将分别表示为一次函数的形式是解题关键.4、C【解析】分为两种情况:7cm是等腰三角形的腰或7cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】解:若7cm为等腰三角形的腰长,则底边长为17-7-7=3(cm),3+7>7,符合三角形的三边关系;

若7cm为等腰三角形的底边,则腰长为(17-7)÷2=5(cm),此时三角形的三边长分别为7cm,5cm,5cm,符合三角形的三边关系;

故选:C.【点睛】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边.5、A【分析】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,由角平分线的性质得出PQ=PM,这时PC+PQ有最小值,为CM的长,然后利用勾股定理和等面积法求得CM的长即可解答.【详解】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,∵AD是∠BAC的平分线,∴PQ=PM,则PC+PQ=PC+PM=CM,即PC+PQ有最小值,为CM的长,∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴由勾股定理得:AB=10,又,∴,∴PC+PQ的最小值为,故选:A.【点睛】本题考查了角平分线的性质、最短路径问题、勾股定理、三角形等面积法求高,解答的关键是掌握线段和最短类问题的解决方法:一般是运用轴对称变换将直线同侧的点转化为异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短,使两条线段之和转化为一条直线来解决.6、B【分析】延长至点,使,过点作于点,交于点,则此时的值最小.最后根据直角三角形的边角关系求解即可.【详解】如图,延长至点,使,过点作于点,交于点,则此时的值最小.在中,,.,,,.,.,,.,,.在中,,.,,.故选B.【点睛】本题考查了最短路径问题,涉及到最短路径问题,一般要考虑线段的性质定理,结合轴对称变换来解决,因此利用轴对称找到对称点是解题的关键.7、C【分析】根据各选项中的函数图象可知直线l1:y=ax+b经过第一、二、三象限,从而判断出a、b的符号,然后根据a、b的符号确定出l2:y=bx﹣a的图象经过的象限,选出正确答案即可.【详解】解:∵直线l1:经过第一、三象限,∴a>1,∴﹣a<1.又∵该直线与y轴交于正半轴,∴b>1.∴直线l2经过第一、三、四象限.在四个选项中只有选项C中直线l2符合,故选C.【点睛】本题考查了一次函数的图象,一次函数y=kx+b(k≠1),k>1时,一次函数图象经过第一三象限,k<1时,一次函数图象经过第二四象限,b>1时与y轴正半轴相交,b<1时与y轴负半轴相交.8、B【解析】根据合并同类项、幂的乘方与积的乘方、同底数幂的乘法及除法法则进行计算即可.【详解】A、错误,a1与a3不是同类项,不能合并;B、正确,(a1)3=a6,符合积的乘方法则;C、错误,应为a6÷a1=a4;D、错误,应为1a×3a=6a1.故选B.【点睛】本题考查了合并同类项,同底数的幂的乘法与除法,幂的乘方,单项式的乘法,熟练掌握运算性质是解题的关键.9、D【分析】根据三角形内角和定理对A进行判断;根据三角形三边的关系对B进行判断;根据三角形面积公式对C进行判断;根据同位角的定义对D进行判断.【详解】A、三角形三个内角的和等于180°,所以A选项为真命题;

B、三角形两边之和大于第三边,所以B选项为真命题;

C、三角形的面积等于一条边的长与该边上的高的乘积的一半,所以C选项为真命题,

D、两直线平行,同位角相等,所以D选项为假命题.

故选:D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10、D【分析】观察图形可发现客车出租车行驶路程均为600千米,客车行驶了10小时,出租车行驶了6小时,即可求得客车和出租车行驶时间和速度;

易求得直线AC和直线OD的解析式,即可求得交点横坐标x,即可求得相遇时间,和客车行驶距离,即可解题.【详解】解:(1)∵客车行驶了10小时,出租车行驶了6小时,∴客车比出租车晚4小时到达目的地,故A正确;

(2)∵客车行驶了10小时,出租车行驶了6小时,∴客车速度为60千米/时,出租车速度为100千米/时,故B正确;

(3)∵设出租车行驶时间为x,距离目的地距离为y,

则y=−100x+600,

设客车行驶时间为x,距离目的地距离为y,

则y=60x;

当两车相遇时即60x=−100x+600时,x=3.75h,故C正确;

∵3.75小时客车行驶了60×3.75=225千米,

∴距离乙地600−225=375千米,故D错误;

故选:D.【点睛】本题主要考查了一次函数解析式的实际应用,正确求得一次函数解析式是解题的关键.11、D【解析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为;故选:D.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.12、B【分析】分别根据算术平方根的定义,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一判断即可.【详解】A.,故本选项不合题意;B.(ab2)3=a3b6,正确;C.a6÷a2=a4,故本选项不合题意;D.(a﹣b)2=a2﹣2ab+b2,故本选项不合题意.故选:B.【点睛】本题主要考查了算术平方根,幂的乘方与积的乘方,同底数幂的除法以及完全平方公式,熟记相关运算法则是解答本题的关键.二、填空题(每题4分,共24分)13、90°.【解析】试题解析:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM-∠ABC=60°,∠ACB=180°-∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°-∠PBC-∠BCP=30°,∴∠A+∠P=90°.考点:1.三角形内角和定理;2.三角形的角平分线、中线和高;3.三角形的外角性质.14、②③④【分析】①通过全等和等边三角形的性质解出答案即可判断;②根据题意推出即可判断;③延长BM交CD于N,利用外角定理推出即可判断;④只需证明四边形ABCD是等腰梯形即可判断.【详解】①∵△ABM≌△CDM,△ABM、△CDM都是等边三角形,∴∠ABM=∠AMB=∠BAM=∠CMD=∠CDM=∠DCM=60°,AB=BM=AM=CD=CM=DM,又∵MA⊥MD,∴∠AMD=90°,∴∠BMC=360°﹣60°﹣60°﹣90°=150°,又∵BM=CM,∴∠MBC=∠MCB=15°;②∵AM⊥DM,∴∠AMD=90°,又∵AM=DM,∴∠MDA=∠MAD=45°,∴∠ADC=45°+60°=105°,∠ABC=60°+15°=75°,∴∠ADC+∠ABC=180°;③延长BM交CD于N,∵∠NMC是△MBC的外角,∴∠NMC=15°+15°=30°,∴BM所在的直线是△CDM的角平分线,又∵CM=DM,∴BM所在的直线垂直平分CD;④根据②同理可求∠DAB=105°,∠BCD=75°,∴∠DAB+∠ABC=180°,∴AD∥BC,又∵AB=CD,∴四边形ABCD是等腰梯形,∴四边形ABCD是轴对称图形.故答案为:②③④.【点睛】本题考查等边三角形的性质、三角形内角和定理、三角形外角性质、平行线的判定,关键在于熟练掌握相关基础知识.15、【分析】根据平行线的性质得出,然后利用互补即可求出的度数.【详解】∵故答案为:.【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.16、1【分析】根据题意画出圆柱的侧面展开图的平面图形,进而利用勾股定理得出答案.【详解】解:如图所示:由题意可得:AD=5m,CD=12m,则AC=(m),故答案为:1.【点睛】本题主要考查了平面展开图的最短路径问题,正确画出平面图形是解题的关键.17、【解析】根据待定系数法将点P(1,m)代入函数中,即可求得m,k的值;即可求得交点坐标,根据三角形的面积公式即可得出结论.【详解】∵正比例函数y=1x的图象与一次函数y=﹣3x+k的图象交于点P(1,m),∴把点P(1,m)代入得:,把①代入②得:m=1,k=5,∴点P(1,1),∴三角形的高就是1.∵y=﹣3x+5,∴A(0),∴OA,∴S△AOP.故答案为:.【点睛】本题考查了待定系数法求解析式;解题的关键是根据正比例函数和一次函数的图象性质进行计算即可.18、±1.【详解】解:∵∴的平方根是±1.故答案为±1.三、解答题(共78分)19、两种机器人需要10小时搬运完成【分析】先设两种机器人需要x小时搬运完成,然后根据工作效率=工作总量÷工作时间,结合A型机器人比B型机器每小时多搬运30kg,得出方程并且进行解方程即可.【详解】解:设两种机器人需要x小时搬运完成,∵900kg+600kg=1500kg,∴A型机器人需要搬运900kg,B型机器人需要搬运600kg.依题意,得:=30,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.【点睛】本题主要考察分式方程的实际应用,根据题意找出等量关系,正确列出分式方程是解题的关键.20、(1)周长为,面积为;(2)【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CE=DE=AB,即可求出周长,作底边CD上的高EH,利用勾股定理求出高,即可求面积;(2)设∠ECB=∠EBC=,则,利用∠DEA=2∠DBE可推出∠CED=30°,作CE边上的高DM,利用30°所对的直角边是斜边的一半可求出高,再根据三角形面积公式求解.【详解】(1)∵,,为中点∴CE=DE=AB=3∴△CDE的周长=CE+DE+CD=3+3+2=8如图,作EH⊥CD∵CE=DE∴CH=CD=1∴S△CDE=(2)∵CE=DE=AB,E为AB中点∴CE=BE,DE=BE,∴∠ECB=∠EBC,∠EBD=∠EDB设∠ECB=∠EBC=,则∠CEA=2∠EBC=,∴∠DEA=2∠EBD=∴∠CED=∠DEA-∠CEA=如图,过D点作DM⊥CE于点M,由(1)可知在Rt△DEM中,DE=3,∴DM=DE=∴【点睛】本题考查了直角三角形斜边上的中线性质,等腰三角形的性质,以及勾股定理,熟练掌握直角三角形斜边上的中线等于斜边的一半与等腰三角形三线合一的性质,是解题的关键.21、(1)答案见解析;(2)26°.【解析】试题分析:(1)作线段AB的垂直平分线,交BC于一点,这点就是D点位置;(2)根据直角三角形两锐角互余可得∠BAC的度数,再根据等边对等角可得∠DAB的度数,进而可得答案.试题解析:(1)如图所示:点D即为所求;(2)∵△ABC,∠C=90°,∠B=32°,∴∠BAC=58°,∵AD=BD,∴∠B=∠DAB=32°,∴∠CAD=58°﹣32°=26°.【点睛】本题主要考查基本作图——线段的垂直平分线,线段垂直平分线的性质等,解题的关键是掌握作图的基本步骤,掌握垂直平分线的性质.22、(1);(2).【分析】(1)两次利用平方差公式分解因式即可;

(2)先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【详解】解:(1)==;(2)==.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.23、(1)真;(2);(3)①证明见解析;②或.【分析】(1)设等边三角形的边长为a,则a2+a2=2a2,即可得出结论;

(2)由勾股定理得出a2+b2=c2①,由Rt△ABC是奇异三角形,且b>a,得出a2+c2=2b2②,由①②得出b=a,c=a,即可得出结论;

(3)①由勾股定理得出AC2+BC2=AB2,AD2+BD2=AB2,由已知得出2AD2=AB2,AC2+CE2=2AE2,即可得出△ACE是奇异三角形;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论