版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省黔东南苗族侗族自治州东南州名校2023年高一上数学期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设是定义在R上的奇函数,当时,(b为常数),则的值为()A.﹣6 B.﹣4C.4 D.62.设P是△ABC所在平面内的一点,,则A. B.C. D.3.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=04.给定已知函数.若动直线y=m与函数的图象有3个交点,则实数m的取值范围为A. B.C. D.5.如图所示的四个几何体,其中判断正确的是A.(1)不棱柱B.(2)是棱柱C.(3)是圆台D.(4)是棱锥6.如下图所示,在正方体中,下列结论正确的是A.直线与直线所成的角是 B.直线与平面所成的角是C.二面角的大小是 D.直线与平面所成的角是7.函数的图像可能是()A. B.C. D.8.已知集合,,,则A. B.C. D.9.已知集合A=,B=,则A.AB= B.ABC.AB D.AB=R10.函数的定义域为()A.(0,2] B.[0,2]C.[0,2) D.(0,2)11.从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是()A.至少有一个白球与都是红球 B.恰好有一个白球与都是红球C.至少有一个白球与都是白球 D.至少有一个白球与至少一个红球12.已知表示不大于的最大整数,若函数在上仅有一个零点,则实数的取值范围为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数的图像恒过定点的坐标为_________.14.命题“”的否定是__________15.已知圆锥的表面积为,且它的侧面展开图是一个半圆,求这个圆锥的体积是______16.已知为锐角,,,则__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数在区间上有最大值5和最小值2,求、的值18.已知函数,.(1)求的值.(2)设,,,求的值.19.已知函数.(1)求函数的定义域;(2)若,求值;(3)求证:当时,20.已知函数.(1)求的最小正周期和单调递增区间;(2)求在区间的最大值和最小值21.在①是函数图象的一条对称轴,②函数的最大值为2,③函数图象与y轴交点的纵坐标是1这三个条件中选取两个补充在下面题目中,并解答已知函数,______(1)求的解析式;(2)求在上的值域22.已知函数的一段图像如图所示.(1)求此函数的解析式;(2)求此函数在上的单调递增区间.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】根据函数是奇函数,可得,求得,结合函数的解析式即可得出答案.【详解】解:因为是定义在R上的奇函数,当时,,,解得所以.故选:B.2、B【解析】由向量的加减法运算化简即可得解.【详解】,移项得【点睛】本题主要考查了向量的加减法运算,属于基础题.3、A【解析】设出直线方程,利用待定系数法得到结果.【详解】设与直线平行的直线方程为,将点代入直线方程可得,解得则所求直线方程为.故A正确【点睛】本题主要考查两直线的平行问题,属容易题.两直线平行倾斜角相等,所以斜率相等或均不存在.所以与直线平行的直线方程可设为4、B【解析】画出函数的图像以及直线y=k的图像,根据条件和图像求得k的范围。【详解】设,由题可知,当,即或时,;当,即时,,因为,故当时,,当时,,做出函数的图像如图所示,直线y=m与函数有3个交点,可得k的范围为(4,5).故选:B【点睛】本题考查函数图像与直线有交点问题,先分别求出各段函数的解析式,再利用数形结合的方法得到参数的取值范围。5、D【解析】直接利用多面体和旋转体的结构特征,逐一核对四个选项得答案解:(1)满足前后面互相平行,其余面都是四边形,且相邻四边形的公共边互相平行,∴(1)是棱柱,故A错误;(2)中不满足相邻四边形的公共边互相平行,∴(2)不是棱柱,故B错误;(3)中上下两个圆面不平行,不符合圆台的结构特征,∴(3)不是圆台,故C错误;(4)符合棱锥的结构特征,∴(4)是棱锥,故D正确故选D考点:棱锥的结构特征6、D【解析】选项,连接,,因为,所以直线与直线所成的角为,故错;选项,因为平面,故为直线与平面所成的角,根据题意;选项,因为平面,所以,故二面角的平面角为,故错;用排除法,选故选:D7、D【解析】∵,∴,∴函数需向下平移个单位,不过(0,1)点,所以排除A,当时,∴,所以排除B,当时,∴,所以排除C,故选D.考点:函数图象的平移.8、D【解析】本题选择D选项.9、A【解析】由得,所以,选A点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理10、A【解析】根据对数函数的定义域,结合二次根式的性质进行求解即可.【详解】由题意可知:,故选:A11、B【解析】列举每个事件所包含的基本事件,结合互斥事件和对立事件的定义,依次验证即可.【详解】解:对于A,事件:“至少有一个白球”与事件:“都是红球”不能同时发生,但是对立,故A错误;对于B,事件:“恰好有一个白球”与事件:“都是红球”不能同时发生,但从口袋内任取两个球时还有可能是两个都是白球,所以两个事件互斥而不对立,故B正确;对于C,事件:“至少有一个白球”与事件:“都是白球”可以同时发生,所以这两个事件不是互斥的,故C错误;对于D,事件:“至少有一个白球”与事件:“至少一个红球”可以同时发生,即“一个白球,一个红球”,所以这两个事件不是互斥的,故D错误.故选:B.12、C【解析】根据题意写出函数表达式为:,在上仅有一个零点分两种情况,情况一:在第一段上有零点,,此时检验第二段无零点,故满足条件;情况二,第二段有零点,以上两种情况并到一起得到:.故答案为C.点睛:在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、(1,2)【解析】令真数,求出的值和此时的值即可得到定点坐标【详解】令得:,此时,所以函数的图象恒过定点,故答案为:14、【解析】特称命题的否定.【详解】命题“”的否定是【点睛】本题考查特称命题的否定,属于基础题;对于含有量词的命题的否定要注意两点:一是要改换量词,即把全称(特称)量词改为特称(全称)量词,二是注意要把命题进行否定.15、【解析】设圆锥母线长为,底面圆半径长,侧面展开图是一个半圆,此半圆半径为,半圆弧长为,表面积是侧面积与底面积的和,则圆锥的底面直径圆锥的高点睛:本题主要考查了棱柱,棱锥,棱台的侧面积和表面积的知识点.首先,设圆锥母线长为,底面圆半径长,然后根据侧面展开图,分析出母线与半径的关系,然后求解其底面体积即可16、【解析】由,都是锐角,得出的范围,由和的值,利用同角三角函数的基本关系分别求出和的值,然后把所求式子的角变为,利用两角和与差的余弦函数公式化简计算,即得结果【详解】,都是锐角,,又,,,,则故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、,.【解析】利用对称轴x=1,[1,3]是f(x)的递增区间及最大值5和最小值2可以找出关于a、b的表达式,求出a、b的值试题解析:依题意,的对称轴为,函数在上随着的增大而增大,故当时,该函数取得最大值,即,当时,该函数取得最小值,即,即,∴联立方程得,解得,.18、(1);(2).【解析】(1)代入可求得其值;(2)由已知求得,,再由同角三角函数的关系可求得,,运用余弦的和角公式可求得答案.【详解】解:(1).(2),∴,∵,∴,∵,∴,,∵.19、(1);(2);(3)证明见解析.【解析】(1)利用真数大于零列出不等式组,其解为,它是函数的定义域.(2)把方程化为后得到,故.(3)分别计算就能得到.解析:(1)由,得函数的定义域为.(2),即,∴,∴且,∴.(3)∵,,∴时,,又∵,∴.20、(1)最小正周期为,单调递增区间;(2)在上的最大值为,最小值为.【解析】(1)由正弦型函数的性质,应用整体代入法有时单调递增求增区间,由求最小正周期即可.(2)由已知区间确定的区间,进而求的最大值和最小值【详解】(1)由三角函解析式知:最小正周期为,令,得,∴单调递增区间为,(2)在上,有,∴当时取最小值,当时取最大值为.21、(1)条件选择见解析,;(2).【解析】(1)选择①②直接求出A及的解;选择①③,先求出,再由求A作答;选择②③,直接可得A,再由求作答.(2)由(1)结合正弦函数的性质即可求得在上的值域.【小问1详解】选择①②,,由及得:,所以的解析式是:.选择①③,由及得:,即,而,则,即,解得,所以的解析式是:.选择②③,,而,即,又,则有,所以的解析式是:.【小问2详解】由(1)知,,当时,,则当,即时,,当,即时,,所以函数在上的值域是.22、(1);(2)和.【解析】(1)根据三角函数的图象求出A,ω,φ,即可确定函数的解析式;(2)根据函数的表达式,即可求函数f(x)的单调递增区间;【详解】(1)由函数的图象可知A,,∴周期T=16,∵T16,∴ω,∴y=2sin(x+φ),∵函数的图象经过(2,﹣2),∴φ=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年标准采购与贸易合同模板版B版
- 2024年演艺合作合同:文化艺术交流与合作
- 2024年挖掘机租赁协议模板指南版
- Lesson 2 Let me show you around!教学实录2024-2025学年冀教版(2024)初中英语七年级上册
- 第5单元 教学初探2024-2025学年三年级语文上册同步教学实录(统编版)
- 2024年度高性能电缆线批量采购合同一
- 2024年校园临时活动安全许可3篇
- 2024年度专业物流鸡苗运输与冷链仓储合同3篇
- 2024至2030年中国气动/电动精小型单座调节阀行业投资前景及策略咨询研究报告
- 2024版二手车买卖合同担保及翻新服务范本3篇
- 开题报告:职普融通与职业教育高质量发展:从国际经验到中国路径创新
- 九年级上册人教版数学期末综合知识模拟试卷(含答案)
- 商标出租合同范例
- 重大版小英小学六年级上期期末测试
- 人教版(2024)八年级上册物理第六章 质量与密度 单元测试卷(含答案解析)
- 会计助理个人年终工作总结
- 钢铁厂电工知识安全培训
- 2024年山东省菏泽市中考历史试卷
- 说明文方法和作用说明文语言准确性中国石拱桥公开课获奖课件省赛课一等奖课件
- 中南运控课设-四辊可逆冷轧机的卷取机直流调速系统设计
- 酒店建设投标书
评论
0/150
提交评论