![广东省执信中学2023年高一上数学期末调研模拟试题含解析_第1页](http://file4.renrendoc.com/view11/M03/1C/15/wKhkGWV3t_SAK0kRAAGv9mBTOjg807.jpg)
![广东省执信中学2023年高一上数学期末调研模拟试题含解析_第2页](http://file4.renrendoc.com/view11/M03/1C/15/wKhkGWV3t_SAK0kRAAGv9mBTOjg8072.jpg)
![广东省执信中学2023年高一上数学期末调研模拟试题含解析_第3页](http://file4.renrendoc.com/view11/M03/1C/15/wKhkGWV3t_SAK0kRAAGv9mBTOjg8073.jpg)
![广东省执信中学2023年高一上数学期末调研模拟试题含解析_第4页](http://file4.renrendoc.com/view11/M03/1C/15/wKhkGWV3t_SAK0kRAAGv9mBTOjg8074.jpg)
![广东省执信中学2023年高一上数学期末调研模拟试题含解析_第5页](http://file4.renrendoc.com/view11/M03/1C/15/wKhkGWV3t_SAK0kRAAGv9mBTOjg8075.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省执信中学2023年高一上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.如图,一个直三棱柱形容器中盛有水,且侧棱.若侧面水平放置时,液面恰好过的中点,当底面ABC水平放置时,液面高为()A.6 B.7C.2 D.42.函数是奇函数,则的值为()A.1 B.C.0 D.3.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直其中,为真命题的是A.①和② B.②和③C.③和④ D.②和④4.在上,满足的的取值范围是()A. B.C. D.5.下列函数中为奇函数的是()A. B.C. D.6.设、、依次表示函数,,的零点,则、、的大小关系为()A. B.C. D.7.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为()A. B.C. D.8.已知集合,或,则()A.或 B.C. D.或9.若函数在单调递增,则实数a的取值范围为()A. B.C. D.10.设,则()A. B.C. D.11.与2022°终边相同的角是()A. B.C.222° D.142°12.函数在区间上的最大值为2,则实数的值为A.1或 B.C. D.1或二、填空题(本大题共4小题,共20分)13.已知函数的图象恒过定点,若点也在函数的图象上,则_________14.如下图所示,三棱锥外接球的半径为1,且过球心,围绕棱旋转后恰好与重合.若,则三棱锥的体积为_____________.15.已知集合,,且,则实数的取值范围是__________16.已知函数在上单调递减,则实数的取值范围是______.三、解答题(本大题共6小题,共70分)17.设全集为R,集合,(1)求;(2)求18.某工厂利用辐射对食品进行灭菌消毒,先准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系式为p=k4x+5(0≤x≤15),若距离为10km时,测算宿舍建造费用为20万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需10万元,铺设路面每千米成本为4万元.设(1)求fx(2)宿舍应建在离工厂多远处,可使总费用最小,并求fx19.已知,且,(1)求,的值;(2),求的值20.已知函数(1)求函数的单调区间;(2)求函数图象的对称中心的坐标和对称轴方程21.如图,△ABC中,,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C、M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体(1)求该几何体中间一个空心球的表面积的大小;(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积.22.(1)求直线与的交点的坐标;(2)求两条平行直线与间的距离
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,由已知条件求出水的体积;当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,故水的体积可以用三角形的面积直接表示出,计算即可得答案【详解】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,底面是梯形,设△ABC的面积为S,则S梯形=S,水的体积V水=S×AA1=6S,当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,则有V水=Sh=6S,故h=6故选A【点睛】本题考点是棱柱的体积计算,考查用体积公式来求高,考查转化思想以及计算能力,属于基础题2、D【解析】根据奇函数的定义可得,代入表达式利用对数的运算即可求解.【详解】函数是奇函数,则,即,从而可得,解得.当时,,即定义域为,所以时,是奇函数故选:D【点睛】本题考查了函数奇偶性的应用,需掌握函数奇偶性的定义,同时本题也考查了对数的运算,属于基础题.3、D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题4、B【解析】根据的函数图象结合特殊角的三角函数值,即可容易求得结果.【详解】根据的图象可知:当时,或,数形结合可知:当,得故选:.【点睛】本题考查利用三角函数的图象解不等式,属简单题.5、D【解析】利用奇函数的定义逐个分析判断【详解】对于A,定义域为,因为,所以是偶函数,所以A错误,对于B,定义域为,因为,且,所以是非奇非偶函数,所以B错误,对于C,定义域为,因为定义域不关于原点对称,所以是非奇非偶函数,所以C错误,对于D,定义域为,因为,所以是奇函数,所以D正确,故选:D6、D【解析】根据题意可知,的图象与的图象的交点的横坐标依次为,作图可求解.【详解】依题意可得,的图象与的图象交点的横坐标为,作出图象如图:由图象可知,,故选:D【点睛】本题主要考查了幂函数、指数函数、对数函数的图象,函数零点,数形结合的思想,属于中档题.7、C【解析】根据直观图的面积与原图面积的关系为,计算得到答案.【详解】直观图的面积,设原图面积,则由,得.故选:C.【点睛】本题考查了平面图形的直观图的面积与原面积的关系,三角形的面积公式,属于基础题.8、A【解析】应用集合的并运算求即可.【详解】由题设,或或.故选:A9、D【解析】根据给定条件利用对数型复合函数单调性列式求解作答.【详解】函数中,令,函数在上单调递增,而函数在上单调递增,则函数在上单调递增,且,因此,,解得,所以实数a的取值范围为.故选:D10、B【解析】根据已知等式,利用指数对数运算性质即可得解【详解】由可得,所以,所以有,故选:B.【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.11、C【解析】终边相同的角,相差360°的整数倍,据此即可求解.【详解】∵2022°=360°×5+222°,∴与2022°终边相同的角是222°.故选:C.12、A【解析】化简可得,再根据二次函数的对称轴与区间的位置关系,结合正弦函数的值域分情况讨论即可【详解】因,令,故,当时,在单调递减所以,此时,符合要求;当时,在单调递增,在单调递减故,解得舍去当时,在单调递增所以,解得,符合要求;综上可知或故选:A.二、填空题(本大题共4小题,共20分)13、【解析】根据对数过定点可求得,代入构造方程可求得结果.【详解】,,,解得:.故答案为:.14、【解析】作于,可证得平面,得,得等边三角形,利用是球的直径,得,然后计算出,再应用棱锥体积公式计算体积【详解】∵围绕棱旋转后恰好与重合,∴,作于,连接,则,,∴又过球心,∴,而,∴,同理,,,由,,,得平面,∴故答案为:【点睛】易错点睛:本题考查求棱锥的体积,解题关键是作于,利用旋转重合,得平面,这样只要计算出的面积,即可得体积,这样作图可以得出,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转,即为.旋转是旋转形成的二面角为.应用作出二面角的平面角15、【解析】,是的子集,故.【点睛】本题主要考查集合的研究对象和交集的概念,考查指数不等式的求解方法,考查二次函数的值域等知识.对于一个集合,首先要确定其研究对象是什么元素,是定义域还是值域,是点还是其它的元素.二次函数的值域主要由开口方向和对称轴来确定.在解指数或对数不等式时,要注意底数对单调性的影响.16、【解析】根据分段函数的单调性,可知每段函数的单调性,以及分界点处的函数的的大小关系,即可列式求解.【详解】因为分段函数在上单调递减,所以每段都单调递减,即,并且在分界点处需满足,即,解得:.故答案为:三、解答题(本大题共6小题,共70分)17、(1);(2)或.【解析】(1)根据给定条件利用交集的定义直接计算即可作答.(2)利用并集的定义求出,再借助补集的定义直接求解作答.【小问1详解】因为,,所以.【小问2详解】因为,,则,而全集为R,所以或.18、(1)fx=9004x+5【解析】(1)根据距离为10km时,测算宿舍建造费用为20万元,可求k的值,由此,可得f(x)的表达式;(2)fx【详解】解:(1)由题意可知,距离为10km时,测算宿舍建造费用为20万元,则20=k4×10+5,解得k(2)因为fx=9004x+5答:宿舍应建在离工厂254km处,可使总费用最小,f【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方19、(1);(2)【解析】(1)首先可通过二倍角公式以及将转化为,然后带入即可计算出的值,再然后通过以及即可计算出的值;(2)可将转化为然后利用两角差的正弦公式即可得出结果【详解】⑴,因为,,所以;⑵因为,,,所以,【点睛】本题考查三角函数的相关性质,主要考查三角恒等变换,考查的公式有、、,在使用计算的时候一定要注意角的取值范围20、(1)增区间为,减区间为(2)对称中心的坐标为;对称轴方程为【解析】(1)将函数转化为,利用正弦函数的单调性求解;(2)利用正弦函数的对称性求解;【小问1详解】解:由.令,解得,令,解得,故函数的增区间为,减区间为;【小问2详解】令,解得,可得函数图象的对称中心的坐标为,令,解得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西北大学考古合作协议
- 购买商品混凝土合同范本
- 豪装房屋出租协议书范本
- 分布式光伏运维合同范本
- 听评课记录小学语文模板
- 不上你的当听评课记录
- 滁州成人高考数学试卷
- 预制界桩制作施工方案
- 磨煤机检修施工方案
- 湘教版数学八年级上册《小结练习》听评课记录7
- 高原铁路建设卫生保障
- 家具厂各岗位责任制汇编
- 颞下颌关节盘复位固定术后护理查房
- 硝苯地平控释片
- 四川省泸州市2019年中考物理考试真题与答案解析
- 部编版语文六年级下册全套单元基础常考测试卷含答案
- 提高检验标本合格率品管圈PDCA成果汇报
- 2023年保险养老地产行业分析报告
- 世界古代史-对接选择性必修(真题再现) 高考历史一轮复习
- 保险公司防火应急预案
- 动物检疫技术-动物检疫的分类(动物防疫与检疫技术)
评论
0/150
提交评论