2024届陕西省宝鸡市陈仓区市级名校中考联考数学试卷含解析_第1页
2024届陕西省宝鸡市陈仓区市级名校中考联考数学试卷含解析_第2页
2024届陕西省宝鸡市陈仓区市级名校中考联考数学试卷含解析_第3页
2024届陕西省宝鸡市陈仓区市级名校中考联考数学试卷含解析_第4页
2024届陕西省宝鸡市陈仓区市级名校中考联考数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西省宝鸡市陈仓区市级名校中考联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是()A.10 B.12 C.20 D.242.下列运算结果为正数的是()A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)3.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n) B.3(m+n) C.4n D.4m4.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定5.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A.1 B.1.5 C.2 D.2.56.单项式2a3b的次数是()A.2 B.3 C.4 D.57.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为A. B. C. D.8.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.两个班的最高分在八(2)班D.八(2)班的成绩集中在中上游9.函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,则m的值为()A.0 B.0或2 C.0或2或﹣2 D.2或﹣210.如图,在平面直角坐标系xOy中,点A从出发,绕点O顺时针旋转一周,则点A不经过()A.点M B.点N C.点P D.点Q11.港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为()A.35.578×103 B.3.5578×104C.3.5578×105 D.0.35578×10512.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个圆锥的母线长为5cm,底面半径为1cm,那么这个圆锥的侧面积为_____cm1.14.Rt△ABC的边AB=5,AC=4,BC=3,矩形DEFG的四个顶点都在Rt△ABC的边上,当矩形DEFG的面积最大时,其对角线的长为_______.15.如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为.16.的相反数是_____.17.因式分解:x2﹣3x+(x﹣3)=_____.18.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,则2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,计算出1+3+32+33+…+32018的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有两种型号的挖掘机,已知3台型和5台型挖掘机同时施工一小时挖土165立方米;4台型和7台型挖掘机同时施工一小时挖土225立方米.每台型挖掘机一小时的施工费用为300元,每台型挖掘机一小时的施工费用为180元.分别求每台型,型挖掘机一小时挖土多少立方米?若不同数量的型和型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?20.(6分)已知关于x,y的二元一次方程组的解为,求a、b的值.21.(6分)如图,已知点D、E为△ABC的边BC上两点.AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据.解:过点A作AH⊥BC,垂足为H.∵在△ADE中,AD=AE(已知)AH⊥BC(所作)∴DH=EH(等腰三角形底边上的高也是底边上的中线)又∵BD=CE(已知)∴BD+DH=CE+EH(等式的性质)即:BH=又∵(所作)∴AH为线段的垂直平分线∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)∴(等边对等角)22.(8分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.(=1.73,结果保留一位小数.)23.(8分)2019年1月,温州轨道交通线正式运营,线有以下4种购票方式:A.二维码过闸B.现金购票C.市名卡过闸D.银联闪付某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).24.(10分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.25.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?26.(12分)如图,AB是⊙O的直径,C是弧AB的中点,弦CD与AB相交于E.若∠AOD=45°,求证:CE=ED;(2)若AE=EO,求tan∠AOD的值.27.(12分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)假如你摸一次,你摸到白球的概率P(白球)=;试估算盒子里黑、白两种颜色的球各有多少只?

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,观察图象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故选B.【题目点拨】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.2、B【解题分析】

分别根据有理数的加、减、乘、除运算法则计算可得.【题目详解】解:A、1+(﹣2)=﹣(2﹣1)=﹣1,结果为负数;B、1﹣(﹣2)=1+2=3,结果为正数;C、1×(﹣2)=﹣1×2=﹣2,结果为负数;D、1÷(﹣2)=﹣1÷2=﹣,结果为负数;故选B.【题目点拨】本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键.3、D【解题分析】

解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.4、C【解题分析】

根据数轴上点的位置判断出a﹣4与a﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.【题目详解】解:根据数轴上点的位置得:5<a<10,∴a﹣4>0,a﹣11<0,则原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故选:C.【题目点拨】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.5、C【解题分析】

连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【题目详解】连接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折叠的性质得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则CG=3,EC=6−x.在直角△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2.【题目点拨】熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.6、C【解题分析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C.点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.7、B【解题分析】试题解析:在菱形中,,,所以,,在中,,因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.8、C【解题分析】

直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.【题目详解】A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;

B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;

C选项:两个班的最高分无法判断出现在哪个班,错误;

D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;

故选C.【题目点拨】考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.9、C【解题分析】

根据函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,利用分类讨论的方法可以求得m的值,本题得以解决.【题目详解】解:∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,∴当m=0时,y=2x+1,此时y=0时,x=﹣0.5,该函数与x轴有一个交点,当m≠0时,函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,则△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值为0或2或﹣2,故选:C.【题目点拨】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用分类讨论的数学思想解答.10、C【解题分析】

根据旋转的性质:对应点到旋转中心的距离相等,逐一判断即可.【题目详解】解:连接OA、OM、ON、OP,根据旋转的性质,点A的对应点到旋转中心的距离与OA的长度应相等根据网格线和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5∵OA=OM=ON=OQ≠OP∴则点A不经过点P故选C.【题目点拨】此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键.11、B【解题分析】

科学计数法是a×,且,n为原数的整数位数减一.【题目详解】解:35578=3.5578×,故选B.【题目点拨】本题主要考查的是利用科学计数法表示较大的数,属于基础题型.理解科学计数法的表示方法是解题的关键.12、C【解题分析】分析:求出扇形的圆心角以及半径即可解决问题;详解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故选C.点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解题分析】分析:根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.详解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=1π•5=10π,∴圆锥的侧面积=•10π•1=10π(cm1).故答案为10π.点睛:本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).14、或【解题分析】

分两种情形画出图形分别求解即可解决问题【题目详解】情况1:如图1中,四边形DEFG是△ABC的内接矩形,设DE=CF=x,则BF=3-x∵EF∥AC,∴=∴=∴EF=(3-x)∴S矩形DEFG=x•(3-x)=﹣(x-)2+3∴x=时,矩形的面积最大,最大值为3,此时对角线=.情况2:如图2中,四边形DEFG是△ABC的内接矩形,设DE=GF=x,作CH⊥AB于H,交DG于T.则CH=,CT=﹣x,∵DG∥AB,∴△CDG∽△CAB,∴∴∴DG=5﹣x,∴S矩形DEFG=x(5﹣x)=﹣(x﹣)2+3,∴x=时,矩形的面积最大为3,此时对角线==∴矩形面积的最大值为3,此时对角线的长为或故答案为或【题目点拨】本题考查相似三角形的应用、矩形的性质、二次函数的最值等知识,解题的关键是学会用分类讨论的思想思考问题15、.【解题分析】试题分析:设正方形的边长为y,EC=x,由题意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y≠0,化简得y=4x,∴sin∠EAB=.考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义16、【解题分析】

根据只有符号不同的两个数互为相反数,可得答案.【题目详解】的相反数是−.故答案为−.【题目点拨】本题考查的知识点是相反数,解题的关键是熟练的掌握相反数.17、(x-3)(x+1);【解题分析】根据因式分解的概念和步骤,可先把原式化简,然后用十字相乘分解,即原式=x2﹣3x+x﹣3=x2﹣2x﹣3=(x﹣3)(x+1);或先把前两项提公因式,然后再把x-3看做整体提公因式:原式=x(x﹣3)+(x﹣3)=(x﹣3)(x+1).故答案为(x﹣3)(x+1).点睛:此题主要考查了因式分解,关键是明确因式分解是把一个多项式化为几个因式积的形式.再利用因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解),进行分解因式即可.18、【解题分析】

仿照已知方法求出所求即可.【题目详解】令S=1+3+32+33+…+32018,则3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.故答案为:.【题目点拨】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米;(2)共有三种调配方案.方案一:型挖据机7台,型挖掘机5台;方案二:型挖掘机8台,型挖掘机4台;方案三:型挖掘机9台,型挖掘机3台.当A型挖掘机7台,型挖掘机5台的施工费用最低,最低费用为12000元.【解题分析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.详解:(1)设每台型,型挖掘机一小时分别挖土立方米和立方米,根据题意,得解得所以,每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米.(2)设型挖掘机有台,总费用为元,则型挖据机有台.根据题意,得,因为,解得,又因为,解得,所以.所以,共有三种调配方案.方案一:当时,,即型挖据机7台,型挖掘机5台;方案二:当时,,即型挖掘机8台,型挖掘机4台;方案三:当时,,即型挖掘机9台,型挖掘机3台.,由一次函数的性质可知,随的减小而减小,当时,,此时型挖掘机7台,型挖掘机5台的施工费用最低,最低费用为12000元.点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.20、或【解题分析】

把代入二元一次方程组得到关于a,b的方程组,经过整理,得到关于b的一元二次方程,解之即可得到b的值,把b的值代入一个关于a,b的二元一次方程,求出a的值,即可得到答案.【题目详解】把代入二元一次方程组得:,

由①得:a=1+b,

把a=1+b代入②,整理得:

b2+b-2=0,

解得:b=-2或b=1,

把b=-2代入①得:a+2=1,

解得:a=-1,

把b=1代入①得:

a-1=1,

解得:a=2,

即或.【题目点拨】本题考查了二元一次方程组的解,正确掌握代入法是解题的关键.21、见解析【解题分析】

根据等腰三角形的性质与判定及线段垂直平分线的性质解答即可.【题目详解】过点A作AH⊥BC,垂足为H.∵在△ADE中,AD=AE(已知),AH⊥BC(所作),∴DH=EH(等腰三角形底边上的高也是底边上的中线).又∵BD=CE(已知),∴BD+DH=CE+EH(等式的性质),即:BH=CH.∵AH⊥BC(所作),∴AH为线段BC的垂直平分线.∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等).∴∠B=∠C(等边对等角).【题目点拨】本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;22、塔CD的高度为37.9米【解题分析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及两个直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC.试题解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.则有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.∵16+DE=DC,∴16+AC=AC,解得:AC=8+8=DE.所以塔CD的高度为(8+24)米≈37.9米,答:塔CD的高度为37.9米.23、(1)600人(2)【解题分析】

(1)计算方式A的扇形圆心角占D的圆心角的分率,然后用方式D的人数乘这个分数即为方式A的人数;(2)列出表格或树状图分别求出所有情况以及两名同学恰好选中同一种购票方式的情况后,利用概率公式即可求出两名同学恰好选中同一种购票方式的概率.【题目详解】(1)(人),∴最喜欢方式A的有600人(2)列表法:ABCAA,AA,BA,CBB,AB,BB,CCC,AC,BC,C树状法:∴(同一种购票方式)【题目点拨】本题考查扇形统计图的运用和列表法或画树状图求概率的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.24、(1)距离是70米,速度为95米/分;(2)y=35x﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米.【解题分析】

(1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A、B两点之间的距离;(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;(3)由图可知甲、乙速度相同;(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.【题目详解】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则2k+b=03k+b=35,解得k=35∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发x分钟相距21米,由题意得,60x+70﹣95x=21,解得,x=1.2,前2分钟﹣3分钟,两机器人相距21米时,由题意得,35x﹣70=21,解得,x=2.1.4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),设线段GH所在直线的函数解析式为:y=kx+b,则,4k+b=357k+b=0,解得k=-则直线GH的方程为y=-353x+当y=21时,解得x=4.6,答:两机器人出发1.2分或2.1分或4.6分相距21米.【题目点拨】本题考查了一次函数的应用,读懂图像是解题关键..25、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价1元时,商场日盈利可达到2000元.【解题分析】

(1)根据“盈利=单件利润×销售数量”即可得出结论;

(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论