河北省保定市冀英校2024届中考猜题数学试卷含解析_第1页
河北省保定市冀英校2024届中考猜题数学试卷含解析_第2页
河北省保定市冀英校2024届中考猜题数学试卷含解析_第3页
河北省保定市冀英校2024届中考猜题数学试卷含解析_第4页
河北省保定市冀英校2024届中考猜题数学试卷含解析_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省保定市冀英校2024届中考猜题数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形不是正方体展开图的是()A. B.C. D.2.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米 B.200米 C.220米 D.100米3.某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x台机器,根据题意可得方程为()A. B. C. D.4.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是().A. B. C. D.5.(2016四川省甘孜州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径的长为()A.π B.2π C.4π D.8π6.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0) B.(2,0) C.(,0) D.(3,0)7.下列各式正确的是()A. B.C. D.8.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×1059.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16 B.14 C.12 D.1010.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B. C. D.711.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元12.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A.9.29×109 B.9.29×1010 C.92.9×1010 D.9.29×1011二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知抛物线和x轴交于两点A、B,和y轴交于点C,已知A、B两点的横坐标分别为﹣1,4,△ABC是直角三角形,∠ACB=90°,则此抛物线顶点的坐标为_____.14.将ΔABC绕点B逆时针旋转到ΔA'BC'使A、B、C'在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为________cm15.春节期间,《中国诗词大会)节目的播出深受观众喜爱,进一步激起了人们对古诗词的喜爱,现有以下四句古诗词:①锄禾日当午;②春眠不觉晓;③白日依山尽;④床前明月光.甲、乙两名同学从中各随机选取了一句写在纸上,则他们选取的诗句恰好相同的概率为________.16.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB周长等于_____.(结果保留根号及π).17.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.18.函数的图象不经过第__________象限.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线y=﹣+bx+c交x轴于点A(﹣2,0)和点B,交y轴于点C(0,3),点D是x轴上一动点,连接CD,将线段CD绕点D旋转得到DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF.(1)求抛物线解析式;(2)若线段DE是CD绕点D顺时针旋转90°得到,求线段DF的长;(3)若线段DE是CD绕点D旋转90°得到,且点E恰好在抛物线上,请求出点E的坐标.20.(6分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.41421.(6分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)根据上图提供的信息回答下列问题:(1)被抽查的居民中,人数最多的年龄段是岁;(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图1.注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%.22.(8分)如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且A(-1,0),B(4,0),∠ACB=90°.(1)求过A、B、C三点的抛物线解析式;(2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;(3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.图1备用图23.(8分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级DCBA人数3a8b分析数据:平均数中位数众数80mn请根据以上提供的信息,解答下列问题:(1)填空:a=,b=;m=,n=;(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?24.(10分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.25.(10分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间用t表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,,,分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:求本次调查的学生人数;求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;若该校共有学生1200人,试估计每周课外阅读时间满足的人数.26.(12分)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.27.(12分)已知AC,EC分别是四边形ABCD和EFCG的对角线,直线AE与直线BF交于点H(1)观察猜想如图1,当四边形ABCD和EFCG均为正方形时,线段AE和BF的数量关系是;∠AHB=.(2)探究证明如图2,当四边形ABCD和FFCG均为矩形,且∠ACB=∠ECF=30°时,(1)中的结论是否仍然成立,并说明理由.(3)拓展延伸在(2)的条件下,若BC=9,FC=6,将矩形EFCG绕点C旋转,在整个旋转过程中,当A、E、F三点共线时,请直接写出点B到直线AE的距离.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】

由平面图形的折叠及正方体的展开图解题.【题目详解】A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体.故选B.【题目点拨】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.2、D【解题分析】

在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【题目详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故选D.【题目点拨】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.3、A【解题分析】

根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间.【题目详解】现在每天生产x台机器,则原计划每天生产(x﹣30)台机器.依题意得:,故选A.【题目点拨】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.4、B【解题分析】试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.考点:3.线段垂直平分线性质;3.轴对称作图.5、B【解题分析】试题分析:∵每个小正方形的边长都为1,∴OA=4,∵将△AOB绕点O顺时针旋转90°得到△A′OB′,∴∠AOA′=90°,∴A点运动的路径的长为:=2π.故选B.考点:弧长的计算;旋转的性质.6、C【解题分析】

过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【题目详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:C.【题目点拨】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.7、A【解题分析】∵,则B错;,则C;,则D错,故选A.8、B【解题分析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】将6500000用科学记数法表示为:6.5×106.故答案选B.【题目点拨】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.9、B【解题分析】

根据切线长定理进行求解即可.【题目详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选B.【题目点拨】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.10、C【解题分析】

把(-2,0)和(0,1)代入y=kx+b,求出解析式,再将A(3,m)代入,可求得m.【题目详解】把(-2,0)和(0,1)代入y=kx+b,得,解得所以,一次函数解析式y=x+1,再将A(3,m)代入,得m=×3+1=.故选C.【题目点拨】本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.11、D【解题分析】

A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【题目详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【题目点拨】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.12、B【解题分析】

科学记数法的表示形式为a×1n的形式,其中1≤|a|<1,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1.【题目详解】解:929亿=92900000000=9.29×11.故选B.【题目点拨】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(,)【解题分析】

连接AC,根据题意易证△AOC∽△COB,则,求得OC=2,即点C的坐标为(0,2),可设抛物线解析式为y=a(x+1)(x﹣4),然后将C点坐标代入求解,最后将解析式化为顶点式即可.【题目详解】解:连接AC,∵A、B两点的横坐标分别为﹣1,4,∴OA=1,OB=4,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵CO⊥AB,∴∠ABC+∠BCO=90°,∴∠CAB=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,即=,解得OC=2,∴点C的坐标为(0,2),∵A、B两点的横坐标分别为﹣1,4,∴设抛物线解析式为y=a(x+1)(x﹣4),把点C的坐标代入得,a(0+1)(0﹣4)=2,解得a=﹣,∴y=﹣(x+1)(x﹣4)=﹣(x2﹣3x﹣4)=﹣(x﹣)2+,∴此抛物线顶点的坐标为(,).故答案为:(,).【题目点拨】本题主要考查相似三角形的判定与性质,抛物线的顶点式,解此题的关键在于熟练掌握其知识点,利用相似三角形的性质求得关键点的坐标.14、4π【解题分析】分析:易得整理后阴影部分面积为圆心角为110°,两个半径分别为4和1的圆环的面积.详解:由旋转可得△ABC≌△A′BC′.∵∠BCA=90°,∠BAC=30°,AB=4cm,∴BC=1cm,AC=13cm,∠A′BA=110°,∠CBC′=110°,∴阴影部分面积=(S△A′BC′+S扇形BAA′)-S扇形BCC′-S△ABC=120π360×(41-11)=4πcm1故答案为4π.点睛:本题利用旋转前后的图形全等,直角三角形的性质,扇形的面积公式求解.15、【解题分析】

用列举法或者树状图法解答即可.【题目详解】解:如图,由图可得,甲乙两人选取的诗句恰好相同的概率为.故答案为:.【题目点拨】本题考查用树状图法或者列表法求随机事件的概率,熟练掌握两种解答方法是关键.16、π+4【解题分析】根据正方形的性质,得扇形所在的圆心角是90°,扇形的半径是2.解:根据图形中正方形的性质,得∠AOB=90°,OA=OB=2.∴扇形OAB的弧长等于π.17、4.027【解题分析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:402700000用科学记数法表示是4.027×1.故答案为4.027×1.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18、三.【解题分析】

先根据一次函数判断出函数图象经过的象限,进而可得出结论.【题目详解】解:∵一次函数中,此函数的图象经过一、二、四象限,不经过第三象限,故答案为:三.【题目点拨】本题考查的是一次函数的性质,即一次函数中,当,时,函数图象经过一、二、四象限.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)抛物线解析式为y=﹣;(2)DF=3;(3)点E的坐标为E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).【解题分析】

(1)将点A、C坐标代入抛物线解析式求解可得;(2)证△COD≌△DHE得DH=OC,由CF⊥FH知四边形OHFC是矩形,据此可得FH=OC=DH=3,利用勾股定理即可得出答案;(3)设点D的坐标为(t,0),由(1)知△COD≌△DHE得DH=OC、EH=OD,再分CD绕点D顺时针旋转和逆时针旋转两种情况,表示出点E的坐标,代入抛物线求得t的值,从而得出答案.【题目详解】(1)∵抛物线y=﹣+bx+c交x轴于点A(﹣2,0)、C(0,3),∴,解得:,∴抛物线解析式为y=﹣+x+3;(2)如图1.∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE.又∵DC=DE,∴△COD≌△DHE,∴DH=OC.又∵CF⊥FH,∴四边形OHFC是矩形,∴FH=OC=DH=3,∴DF=3;(3)如图2,设点D的坐标为(t,0).∵点E恰好在抛物线上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,分两种情况讨论:①当CD绕点D顺时针旋转时,点E的坐标为(t+3,t),代入抛物线y=﹣+x+3,得:﹣(t+3)2+(t+3)+3=t,解得:t=1或t=﹣,所以点E的坐标E1(4,1)或E2(﹣,﹣);②当CD绕点D逆时针旋转时,点E的坐标为(t﹣3,﹣t),代入抛物线y=﹣+x+3得:﹣(t﹣3)2+(t﹣3)+3=﹣t,解得:t=或t=.故点E的坐标E3(,﹣)或E4(,﹣);综上所述:点E的坐标为E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).【题目点拨】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、全等三角形的判定与性质、矩形的判定与性质及分类讨论思想的运用.20、新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.【解题分析】

根据题意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长.【题目详解】解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=15°,BC=1.在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.∵∠CBD=15°,∴BD=CD=2.在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.【题目点拨】本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键.21、(1)11~30;(1)31~40岁年龄段的满意人数为66人,图见解析;【解题分析】

(1)取扇形统计图中所占百分比最大的年龄段即可;(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.【题目详解】(1)由扇形统计图可得11~30岁的人数所占百分比最大为39%,所以,人数最多的年龄段是11~30岁;(1)根据题意,被调查的人中,总体印象感到满意的有:400×83%=331人,31~40岁年龄段的满意人数为:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,补全统计图如图.【题目点拨】本题考点:条形统计图与扇形统计图.22、见解析【解题分析】分析:(1)根据求出点的坐标,用待定系数法即可求出抛物线的解析式.(2)分两种情况进行讨论即可.(3)存在.假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.分当平行四边形是平行四边形时,当平行四边形AONM是平行四边形时,当四边形AMON为平行四边形时,三种情况进行讨论.详解:(1)易证,得,∴OC=2,∴C(0,2),∵抛物线过点A(-1,0),B(4,0)因此可设抛物线的解析式为将C点(0,2)代入得:,即∴抛物线的解析式为(2)如图2,当时,则P1(,2),当时,∴OC∥l,∴,∴P2H=·OC=5,∴P2(,5)因此P点的坐标为(,2)或(,5).(3)存在.假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.如图3,当平行四边形是平行四边形时,M(,),(,),当平行四边形AONM是平行四边形时,M(,),N(,),如图4,当四边形AMON为平行四边形时,MN与OA互相平分,此时可设M(,m),则∵点N在抛物线上,∴-m=-·(-+1)(--4)=-,∴m=,此时M(,),N(-,-).综上所述,M(,),N(,)或M(,),N(,)或M(,),N(-,-).点睛:属于二次函数综合题,考查相似三角形的判定与性质,待定系数法求二次函数解析式等,注意分类讨论的思想方法在数学中的应用.23、(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本【解题分析】

(1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;(2)达标的学生人数=总人数×达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果.【题目详解】解:(1)由统计表收集数据可知a=5,b=4,m=81,n=81;(2)(人).答:估计达标的学生有300人;(3)80×52÷260=16(本).答:估计该校学生每人一年(按52周计算)平均阅读16本课外书.【题目点拨】本题主要考查统计表以及中位数,众数,估计达标人数等,能够从统计表中获取有效信息是解题的关键.24、(1)证明见解析;(2)【解题分析】试题分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.试题解析:(1)证明:连接OD,CD,∵BC为⊙O直径,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵D点在⊙O上,∴DE为⊙O的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=BC=2,BD=BC•cos30°=2,∴AD=BD=2,AB=2BD=4,∴S△ABC=AB•CD=×4×2=4,∵DE⊥AC,∴DE=AD=×2=,AE=AD•cos30°=3,∴S△ODE=OD•DE=×2×=,S△ADE=AE•DE=××3=,∵S△BOD=S△BCD=×S△ABC=×4=,∴S△OEC=S△ABC-S△BOD-S△ODE-S△ADE=4---=.25、本次调查的学生人数为200人;B所在扇形的圆心角为,补全条形图见解析;全校每周课外阅读时间满足的约有360人.【解题分析】【分析】根据等级A的人数及所占百分比即可得出调查学生人数;先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角;总人数课外阅读时间满足的百分比即得所求.【题目详解】由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的,所以:人,即本次调查的学生人数为200人;由条形图知:C级的人数为60人,所以C级所占的百分比为:,B级所占的百分比为:,B级的人数为人,D级的人数为:人,B所在扇形的圆心角为:,补全条形图如图所示:;因为C级所占的百分比为,所以全校每周课外阅读时间满足的人数为:人,答:全校每周课外阅读时间满足的约有360人.【题目点拨】本题考查了扇形图和条形图的相关知识,从统计图中找到必要的信息进行解题是关键.扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比.26、(1)证明见解析;(2).();(3).【解题分析】分析:(1)先判断出∠ABM=∠DOM,进而判断出△OAC≌△BAM,即可得出结论;(2)先判断出BD=DM,进而得出,进而得出AE=,再判断出,即可得出结论;(3)分三种情况利用勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如图2,过点D作DE∥AB,交OM于点E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)当OA=OC时.∵.在Rt△ODM中,.∵.解得,或(舍).(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论