版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古呼和浩特市2024届中考数学模拟精编试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列运算正确的是()A.2a﹣a=1B.2a+b=2abC.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a52.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是()A. B.C. D.3.如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①;②当0<x<3时,;③如图,当x=3时,EF=;④当x>0时,随x的增大而增大,随x的增大而减小.其中正确结论的个数是()A.1 B.2 C.3 D.44.已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为()A.1 B.2 C.3 D.45.若实数a,b满足|a|>|b|,则与实数a,b对应的点在数轴上的位置可以是()A. B. C. D.6.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是()A. B.C. D.7.如图所示的四张扑克牌背面完全相同,洗匀后背面朝上,则从中任意翻开一张,牌面数字是3的倍数的概率为()A. B. C. D.8.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25° B.30° C.35° D.55°9.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.12B.1C.3210.计算﹣2+3的结果是()A.1 B.﹣1 C.﹣5 D.﹣6二、填空题(共7小题,每小题3分,满分21分)11.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果是____________(用含字母x和n的代数式表示).12.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=48°,则∠ACB′=_____.13.圆锥的底面半径为4cm,高为5cm,则它的表面积为______cm1.14.在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_____.15.已知抛物线y=x2上一点A,以A为顶点作抛物线C:y=x2+bx+c,点B(2,yB)为抛物线C上一点,当点A在抛物线y=x2上任意移动时,则yB的取值范围是_________.16.分解因式:a2b+4ab+4b=______.17.如图是“已知一条直角边和斜边作直角三角形”的尺规作图过程已知:线段a、b,求作:.使得斜边AB=b,AC=a作法:如图.(1)作射线AP,截取线段AB=b;(2)以AB为直径,作⊙O;(3)以点A为圆心,a的长为半径作弧交⊙O于点C;(4)连接AC、CB.即为所求作的直角三角形.请回答:该尺规作图的依据是______.三、解答题(共7小题,满分69分)18.(10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.19.(5分)已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).20.(8分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.21.(10分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.22.(10分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图;分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.23.(12分)已知A=ab(a-b)-ba(a-b).化简A;如果a、b24.(14分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米,求点B到地面的距离;求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】【分析】根据合并同类项,幂的乘方,同底数幂的乘法的计算法则解答.【题目详解】A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确,故选D.【题目点拨】本题考查了合并同类项、幂的乘方、同底数幂的乘法,熟练掌握各运算的运算法则是解题的关键.2、C【解题分析】
本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【题目详解】解:原计划用时为:,实际用时为:.所列方程为:,故选C.【题目点拨】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.3、C【解题分析】试题分析:对于直线,令x=0,得到y=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴(同底等高三角形面积相等),选项①正确;∴C(2,2),把C坐标代入反比例解析式得:k=4,即,由函数图象得:当0<x<2时,,选项②错误;当x=3时,,,即EF==,选项③正确;当x>0时,随x的增大而增大,随x的增大而减小,选项④正确,故选C.考点:反比例函数与一次函数的交点问题.4、C【解题分析】
先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.【题目详解】去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情况有两种:(1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.解得a=.当a=时,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.(i)当x=1时,代入①式得3﹣a=1,即a=3.当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.(ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个.故选C.【题目点拨】考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.5、D【解题分析】
根据绝对值的意义即可解答.【题目详解】由|a|>|b|,得a与原点的距离比b与原点的距离远,只有选项D符合,故选D.【题目点拨】本题考查了实数与数轴,熟练运用绝对值的意义是解题关键.6、B【解题分析】
根据题意找到从左面看得到的平面图形即可.【题目详解】这个立体图形的左视图是,
故选:B.【题目点拨】本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置.7、C【解题分析】
根据题意确定所有情况的数目,再确定符合条件的数目,根据概率的计算公式即可.【题目详解】解:由题意可知,共有4种情况,其中是3的倍数的有6和9,∴是3的倍数的概率,故答案为:C.【题目点拨】本题考查了概率的计算,解题的关键是熟知概率的计算公式.8、C【解题分析】
根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.【题目详解】解:∵直线m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故选C.【题目点拨】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.9、B【解题分析】
根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是△ACD的中位线即可求出.【题目详解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中点,∴CD=12AB=12∵E,F分别为AC,AD的中点,∴EF是△ACD的中位线.∴EF=12CD=12故答案选B.【题目点拨】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.10、A【解题分析】
根据异号两数相加的法则进行计算即可.【题目详解】解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.故选A.【题目点拨】本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.二、填空题(共7小题,每小题3分,满分21分)11、【解题分析】试题分析:根据题意得;;;根据以上规律可得:=.考点:规律题.12、6°【解题分析】∠B=48°,∠ACB=90°,所以∠A=42°,DC是中线,所以∠BCD=∠B=48°,∠DCA=∠A=48°,因为∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.13、【解题分析】
利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径的平方+底面周长×母线长÷1.【题目详解】底面半径为4cm,则底面周长=8πcm,底面面积=16πcm1;由勾股定理得,母线长=,圆锥的侧面面积,∴它的表面积=(16π+4)cm1=cm1,故答案为:.【题目点拨】本题考查了有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(1)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.14、【解题分析】摸三次有可能有:红红红、红红蓝、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是.故答案是:.15、ya≥1【解题分析】
设点A的坐标为(m,n),由题意可知n=m1,从而可知抛物线C为y=(x-m)1+n,化简为y=x1-1mx+1m1,将x=1代入y=x1-1mx+1m1,利用二次函数的性质即可求出答案.【题目详解】设点A的坐标为(m,n),m为全体实数,
由于点A在抛物线y=x1上,
∴n=m1,
由于以A为顶点的抛物线C为y=x1+bx+c,
∴抛物线C为y=(x-m)1+n
化简为:y=x1-1mx+m1+n=x1-1mx+1m1,
∴令x=1,
∴ya=4-4m+1m1=1(m-1)1+1≥1,
∴ya≥1,
故答案为ya≥1【题目点拨】本题考查了二次函数的性质,解题的关键是根据题意求出ya=4-4m+1m1=1(m-1)1+1.16、b(a+2)2【解题分析】
根据公式法和提公因式法综合运算即可【题目详解】a2b+4ab+4b=.故本题正确答案为.【题目点拨】本题主要考查因式分解.17、等圆的半径相等,直径所对的圆周角是直角,三角形定义【解题分析】
根据圆周角定理可判断△ABC为直角三角形.【题目详解】根据作图得AB为直径,则利用圆周角定理可判断∠ACB=90°,从而得到△ABC满足条件.故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义.【题目点拨】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.三、解答题(共7小题,满分69分)18、(1)AE=DF,AE⊥DF,理由见解析;(2)成立,CE:CD=或2;(3)【解题分析】试题分析:(1)根据正方形的性质,由SAS先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE=a即可;②当AE=AC时,设正方形的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a即可;(3)由(1)(2)知:点P的路径是一段以AD为直径的圆,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最大,再由勾股定理可得QC的长,再求CP即可.试题解析:(1)AE=DF,AE⊥DF,理由是:∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,∴,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的结论还成立,有两种情况:①如图1,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得,,则;②如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵点P在运动中保持∠APD=90°,∴点P的路径是以AD为直径的圆,如图3,设AD的中点为Q,连接CQ并延长交圆弧于点P,此时CP的长度最大,∵在Rt△QDC中,∴,即线段CP的最大值是.点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大.19、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).【解题分析】试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM(ASA),得AM=FM,设AM=x,则AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.(2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE=x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC=90°,∴∠CEG+∠FEG=90°.又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG=∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM(ASA),∴AM=FM.设AM=x,则AF=2x,DN=x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考点:四边形综合题.20、(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解题分析】
(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;用待定系数法求出一次函数解析式,再代入进行运算即可.【题目详解】(1)汽车行驶400千米,剩余油量30升,即加满油时,油量为70升.(2)设,把点,坐标分别代入得,,∴,当时,,即已行驶的路程为650千米.【题目点拨】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.21、(1)证明见解析;(2).【解题分析】
(1)由切线的性质可知∠DAB=90°,由直角所对的圆周为90°可知∠ACB=90°,根据同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性质可知∠B=∠OCB,由对顶角的性质可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE•AD,故此可求得DE=,于是可求得AE=.【题目详解】解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB,∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴,即.解得:DE=,∴AE=AD﹣DE=.22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024试剂生产与销售代理合作合同范本3篇
- 2024版工地吊车租赁合同2篇
- 二零二四年店铺租赁合同范本(个体户专用)
- 二零二四年南京二手房买卖合同附环保检测服务协议3篇
- 2024离婚协议公证格式范本模板
- 2025年度私人房产投资咨询与风险评估合同3篇
- 二零二五版农业机械承包与种植服务合同3篇
- 二零二四年定制化软件功能测试服务合同3篇
- 2025年度煤矿企业安全生产管理人员劳动合同示范4篇
- 二零二五年度股权代持合同违约责任与赔偿规定3篇
- 搭竹架合同范本
- Neo4j介绍及实现原理
- 锐途管理人员测评试题目的
- 焊接材料-DIN-8555-标准
- 工程索赔真实案例范本
- 重症医学科运用PDCA循环降低ICU失禁性皮炎发生率品管圈QCC持续质量改进成果汇报
- 个人股权证明书
- 医院运送工作介绍
- 重症患者的容量管理
- 学习游戏对中小学生学业成绩的影响
- 小学四年级上册递等式计算100题及答案
评论
0/150
提交评论