5.4三角函数的图象与性质(精讲)(原卷版)_第1页
5.4三角函数的图象与性质(精讲)(原卷版)_第2页
5.4三角函数的图象与性质(精讲)(原卷版)_第3页
5.4三角函数的图象与性质(精讲)(原卷版)_第4页
5.4三角函数的图象与性质(精讲)(原卷版)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

5.4三角函数的图象与性质(精讲)三角函数的图像及性质函数y=sinxy=cosxy=tanx图象定义域RR{xeq\b\lc\|(\a\vs4\al\co1(x∈R,且))x≠kπ+eq\f(π,2)}值域[-1,1][-1,1]R最小正周期2π2ππ奇偶性奇函数偶函数奇函数递增区间eq\b\lc\[(\a\vs4\al\co1(2kπ-\f(π,2),))eq\b\lc\\rc\](\a\vs4\al\co1(2kπ+\f(π,2)))[2kπ-π,2kπ]eq\b\lc\((\a\vs4\al\co1(kπ-\f(π,2),))eq\b\lc\\rc\)(\a\vs4\al\co1(kπ+\f(π,2)))递减区间eq\b\lc\[(\a\vs4\al\co1(2kπ+\f(π,2),))eq\b\lc\\rc\](\a\vs4\al\co1(2kπ+\f(3π,2)))[2kπ,2kπ+π]无对称中心(kπ,0)eq\b\lc\(\rc\)(\a\vs4\al\co1(kπ+\f(π,2),0))eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(kπ,2),0))对称轴方程x=kπ+eq\f(π,2)x=kπ无二.周期函数条件①对于函数f(x),存在一个非零常数T(T>0)②当x取定义域内的每一个值时,都有f(x+T)=f(x)结论函数f(x)叫做周期函数,非零常数T叫做这个函数的周期条件如果周期函数f(x)的所有周期中存在一个最小的正数结论这个最小正数叫做f(x)的最小正周期一.用三角函数图象解三角不等式(1)作出相应正弦函数或余弦函数在[0,2π]上的图象;(2)写出适合不等式在区间[0,2π]上的解集;(3)根据公式一写出不等式的解集.二.求三角函数周期(1)定义法,即利用周期函数的定义求解.(2)公式法,对形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(A,ω,φ是常数,A≠0,ω≠0)的函数,T=eq\f(2π,|ω|).(3)观察法,即通过观察函数图象求其周期.三.判断函数奇偶性(1)看函数的定义域是否关于原点对称;(2)看f(-x)与f(x)的关系.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断.四.单调区间的求法求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)的函数的单调区间,要先把ω化为正数.(1)当A>0时,把ωx+φ整体代入y=sinx或y=cosx的单调递增区间内,求得的x的范围即为函数的单调递增区间.(2)当A<0时,把ωx+φ整体代入y=sinx或y=cosx的单调递增区间内,求得的x的范围即为函数的单调递减区间;代入y=sinx或y=cosx的单调递减区间内,可求得函数的单调递增区间.五.比较三角函数值大小(1)异名函数化为同名函数.(2)利用诱导公式把已知角转化到同一单调区间上.(3)利用函数的单调性比较大小.六.求三角函数值域或最值(1)形如y=sin(ωx+φ)的三角函数,令t=ωx+φ,根据题中x的取值范围,求出t的取值范围,再利用三角函数的单调性、有界性求出y=sint的最值(值域).(2)形如y=asin2x+bsinx+c(a≠0)的三角函数,可先设t=sinx,将函数y=asin2x+bsinx+c(a≠0)化为关于t的二次函数y=at2+bt+c(a≠0),根据二次函数的单调性求值域(最值).(3)对于形如y=asinx(或y=acosx)的函数的最值还要注意对a的讨论.考点一“五点法”作图的应用【例11】(2022·全国·高一专题练习)作出下列函数在一个周期图象的简图:(1);(2);(3);(4).【例12】(2023秋·高一课时练习)当时,作出下列函数的图象,把这些图象与的图象进行比较,你能发现图象变换的什么规律?(1);(2);(3).考点二正弦、余弦函数的周期【例21】(2023湖南)下列函数中,最小正周期为π的函数是(

)A.y=sinx B.y=cosxC.y=sin D.y=cos【例22】(2023秋·高一课时练习)下列函数,最小正周期为的是(

)A. B.C. D.【一隅三反】1.(2023·全国·高一专题练习)函数的最小正周期是(

)A. B. C. D.2.(2023北京)下列函数中,最小正周期为π的函数是(

)A. B.C. D.3.(2023·全国·高一假期作业)(多选)下列函数中,是周期函数的是()A. B.C. D.4.(2023春·江西上饶·高一校联考期中)(多选)下列函数,最小正周期为的有(

)A. B.C. D.考点三正弦、余弦函数的奇偶性【例31】7.(2023春·四川眉山·高一校考期中)下列函数中是奇函数,且最小正周期是的函数是(

)A. B. C. D.【例32】(2021春·陕西榆林·高一校考阶段练习)若函数)是奇函数,则的最小值为(

)A. B. C. D.【例33】(2023秋·高一课时练习)判断下列函数的奇偶性.(1);(2);(3).【一隅三反】1.(2023秋·高一课时练习)函数(

)A.是奇函数,但不是偶函数B.是偶函数,但不是奇函数C.既是奇函数,又是偶函数D.既不是奇函数,又不是偶函数2.(2023春·云南·高一校考阶段练习)下列函数中,最小正周期为的偶函数是()A. B.C. D.3.(2023秋·高一课时练习)(多选)已知函数是奇函数,则的值可以是(

)A.0 B.C. D.4.(2023秋·宁夏吴忠·高一青铜峡市高级中学校考期末)(多选)以下函数是偶函数的是(

)A. B. C. D.考点四正弦、余弦函数的对称性【例41】(2023春·北京·高一北京市第一六一中学校考期中)函数的图象(

)A.关于直线对称 B.关于直线对称C.关于点对称 D.关于点对称【例42】(2023春·上海杨浦·高一上海市控江中学校考期末)已知常数,如果函数的图像关于点中心对称,那么的最小值为(

)A. B. C. D.【一隅三反】1.(2023云南)函数图象的一个对称中心可以是()A. B. C. D.2.(2023春·四川成都·高一校考期中)下列直线中,可以作为曲线的对称轴的是(

)A. B. C. D.3.(2023春·河南驻马店·高一统考阶段练习)(多选)已知函数,则(

)A.的图象关于直线对称 B.的图象关于点对称C.的图象关于点对称 D.的图象关于直线对称考点五正弦、余弦函数的单调性【例51】(2023春·重庆江津·高一校考期中)(多选)函数在(

)A.区间上是增函数 B.区间上是增函数C.区间上是减函数 D.区间上是减函数【例52】(2022春·上海浦东新·高一校考期末)函数的单调递增区间是.【例53】(2023春·广西钦州·高一校考期中)(多选)下列函数在区间上单调递增的是(

)A. B.C. D.【例54】(2023春·安徽马鞍山·高一安徽省当涂第一中学校考期中)已知函数在区间上单调递减,则实数的取值范围为.【一隅三反】1.(2023春·宁夏吴忠·高一青铜峡市高级中学校考期中)函数的一个单调减区间是()A. B.C. D.2.(2023·全国·高一专题练习)函数的一个单调递减区间为(

)A. B. C. D.3.(2023秋·高一课时练习)函数的单调递减区间为.4.(2023·全国·高一课堂例题)函数的单调递增区间为.5.(2023秋·江苏宿迁·高一江苏省泗阳中学校考期末)已知函数其中.若在区间上单调递增,则ω的取值范围是(

)A. B. C. D.6.(2023·全国·高一课堂例题)已知函数在区间上不单调,则的取值范围为(

)A. B.C. D.考点六正弦、余弦函数的单调性的应用【例61】(2023春·福建泉州·高一校联考期中)下列结论正确的是(

)A. B.C. D.【例62】(2023春·江苏苏州·高一统考期末)已知,,,则,,的大小关系为(

)A. B. C. D.【一隅三反】1.(2023春·广西钦州·高一校考期中),,的大小顺序是(

)A. B.C. D.2.(2023·全国·高一假期作业)下列选项中错误的是(

)A. B.C. D.3.(2023春·四川绵阳·高一四川省绵阳南山中学校考期中)设,则大小关系(

)A. B.C. D.考点七正弦、余弦函数的最值(值域)问题【例71】(2023春·四川眉山·高一校考期中)已知函数,则的值域是(

)A. B. C. D.【例72】(2023·全国·高一专题练习)函数的最小值是.【例73】(2023春·河南周口·高一周口恒大中学校考阶段练习)函数的值域为.【例74】(2023春·四川眉山·高一校联考期中)已知函数的值域为,则的取值范围是(

)A. B. C. D.【一隅三反】1(2022秋·江苏常州·高一常州高级中学校考期末)函数的值域是(

)A. B.C. D.2.(2023秋·陕西安康·高一校联考期末)函数的最小值是.3.(2023春·江西宜春·高一江西省丰城中学校考阶段练习)已知函数,若在上的值域是,则实数的取值范围为(

)A. B. C. D.4.(2023春·四川南充·高一四川省南充市白塔中学校考期中)函数的值域为.考点八正切函数图像及性质【例8】(2024秋·广东)(多选)已知函数,则下列说法正确的是(

)A.的最小正周期为B.在上单调递减C.D.的定义域为【一隅三反】1.(2023春·辽宁大连·高

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论