版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档精心整理精品文档可编辑的精品文档公倍数和最小公倍数教学目标:1.使学生理解和认识公倍数和最小公倍数,能用列举的方法求两个自然数的公倍数和最小公倍数,能通过直观图理解两个数的倍数及公倍数之间的关系。2.使学生借助直观认识公倍数,理解公倍数的特征;通过列举探索求公倍数和最小公倍数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心;培养与同伴合作、交流的意识和良好品质。教学重点:求两个数的公倍数和最小公倍数教学难点:理解求公倍数和最小公倍数的方法。课前准备:课件。教学过程:一、揭示课题揭题:我们已经学习了公因数和最大公因数,今天这节课学习公倍数和最小公倍数。(板书课题)新课标第一网提问:看了这个课题,你有什么想法?你对公倍数有哪些想法?对最小公倍数呢?引导:大家交流的想法,实际上是联系公因数和最大公因数进行联想,提出自己的想法。这样的学习方法可以帮助我们学好数学。那刚才大家的想法是不是正确呢?现在,我们一起来研究公倍数和最小公倍数。(板书课题)二、学习新知1.认识公倍数。(1)出示例11,让学生说说知道了些什么,提出的什么问题。引导:用长3厘米、宽2厘米的长方形铺两个正方形,哪个正好铺满,哪个不能铺满?看图想一想是为什么,你能不能根据自己的想法写出算式来说明理由,并和同桌互相说一说?交流:哪个正方形能正好铺满,哪个不能铺满?为什么用同一个长方形去铺,边长6厘米的能正好铺满,边长8厘米的却不能铺满呢?你能结合图形,说明你的理由和表示的算式吗?结合学生交流和算式表示,借助图形演示引导观察并理解:正方形边长数6是长方形两边边长数3和2的倍数,能正好铺满;(板书:6÷3=26÷2=3)另一个正方形边长数8是2的倍数,但不是3的倍数,不能正好铺满。(板书:8÷2—48÷3—2……2)提问:联系铺满长方形的图形,观察列出的算式,你觉得6和3、2这两个数有怎样的关系?说明:6既是3的倍数,又是2的倍数,是3和2公有的倍数。(2)引导:想一想,这个长方形纸片还能正好铺满边长多少厘米的正方形?为什么?和同桌说说你的想法。交流:还能正好铺满边长多少厘米的正方形?你是怎样想的?(明确可以正好铺满边长12厘米、18厘米……的正方形)你发现正方形的边长厘米数只要满足什么条件,就能用这个长方形正好铺满?像这样能被正好铺满的正方形有多少个,能找得完吗?说明:这个长方形能正好铺满边长是6厘米、12厘米、18厘米、24厘米……的正方形,因为它们的边长数是2的倍数,又是3的倍数。这样的正方形找不完,个数是无限的。(3)引导:现在你发现,6、12、18、24……这些数和2、3都有什么关系?说说你的想法。指出:同学们的理解还真不错!大家发现6、12、18、24……这样的数,既是2的倍数,又是3的倍数,也就是2和3公有的倍数,我们称它们是2和3的公倍数。(板书:公倍数)追问:8是2和3的公倍数吗?为什么不是?那哪些数是2和3的公倍数呢?(板书:6,12,18,24……是2和3的公倍数)为什么公倍数里要用省略号?你还能任意再说几个2和3的公倍数吗?说明:两个数公有的倍数,叫作这两个数的公倍数。(接“公倍数”板书:——两个数公有的倍数)两个数的公倍数有无数个,所以写公倍数时需要用省略号表示。2.求公倍数。出示例12,明确要找6和9的公倍数和最小的公倍数。让学生独立找出6和9的公倍数和最小的公倍数,与同桌交流自己的方法。交流:你是怎样找出6和9的公倍数和最小的公倍数的?小结:大家用不同的方法找出了6和9的公倍数有18,36,54……其中’最小的是18。18是6和9的最小公倍数。追问:有没有最大的公倍数?为什么?说明:两个数的公倍数有无数个,没有最大的公倍数。两个数的公倍数里最小的一个,就是这两个数的最小公倍数。(板书:最小公倍数——公倍数中最小的一个)3.用集合图表示公倍数。引导:你也能用圆圈图表示6的倍数、9的倍数和公倍数的关系吗?自己画一画。学生交流,呈现集合相交的图,(图见教材,略)分别标注出“6的倍数”“9的倍数”“6和9的公倍数”,并强调三个部分都有无数个数,都要用省略号表示。让学生看直观图说说,哪些数是6的倍数,哪些数是9的倍数,哪些数是6和9的公倍数,最小公倍数是几。指出:从图上可以直接看出,6和9公有的倍数,是它们的公倍数,其中最小的一个,是它们的最小公倍数。三、巩固深化1.做“练一练”第1题。让学生按要求完成,填写公倍数和最小公倍数。交流:2的倍数有哪些?5的倍数呢?它们的公倍数和最小公倍数呢?在这个练习中怎样得出2和5的公倍数和最小公倍数的?说明:先在表里分别圈出两个数的倍数,再看哪些数同时是两个数的倍数'就是两个数的公倍数。其中最小的一个就是最小公倍数。2.做“练一练”第2题。让学生在直线上分别画出4和6的公倍数,再填空。交流:你怎样在直线上找4和6的倍数的?(呈现在直线上表示)怎样的数是4和6的公倍数和最小公倍数?公倍数是哪些数,最小公倍数是几?(呈现填空结果)注意检查有没有用省略号。3.做练习七第9题。让学生先分别填出左边圈里的数,再填写相交圈里的数。交流:你是怎样填的?(呈现结果)这里为什么不用省略号?说明:50以内6和8公有的倍数,就是6和8在50以内的公倍数。50以内6的倍数、8的倍数和公倍数的个数都是有限的,所以不需要用省略号。4.做练习七第10题。(1)让学生填空完成。交流填充结果并呈现。提问:你是按怎样的方法找出8和20的公倍数和最小公倍数的?(2)引导:这里先分别找两个数的倍数,再找其中的公倍数和最小公倍数。你能用这样的方法找出10和15的最小公倍数吗?自己找一找。学生练习,教师巡视。交流结果。追问:除了像这样通过分别找两个数的倍数,再找最小公倍数的方法外,还能怎样找?说明:还可以先找一个数的倍数,再从中找出另一个数的倍数,其中最小的就是最小公倍数。四、反思总结精品文档精心整理精品文档可编辑的精品文档公因数和最大公因数教学目标:1.使学生理解和认识公因数和最大公因数,能用列举的方法求100以内两个数的公因数和最大公因数,能通过直观图理解两个数的因数及公因数之间的关系。2.使学生借助直观认识公因数,理解公因数的特征;通过列举探索求公因数和最大公因数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心。教学重点:求两个数的公因数和最大公因数。教学难点:理解求公因数和最大公因数的方法。课前准备:课件。教学过程:一、铺垫准备1.直观演示,作好铺垫。出示边长6厘米和边长5厘米的两个正方形。提问:观察这两个正方形,哪一个能正好分成边长都是2厘米的小正方形?根据学生交流,演示分割正方形,看出每条边长6厘米都正好可以分成3份,这个正方形能正好分成边长2厘米的小正方形;边长5厘米的不能正好分成。追问:为什么边长6厘米的正好可以分成边长2厘米的小正方形,而边长5厘米的不能?指出:因为小正方形边长2是6的因数,边长6÷2=3(份),所以能正好分成同样的正方形;但2不是5的因数,边长5÷2有余数,就不能正好分成。二、学习新知1.认识公因数。(1)出示例9,了解题意。启发:观察正方形纸片的边长和长方形的长、宽,哪种纸片能把长方形正好铺满,哪种不能正好铺满?先在小组讨论,说说你的理由。交流:哪种纸片能把长方形正好铺满,哪种不能?你是怎样想的?结合交流进行演示,引导观察用正方形纸片铺的结果,理解边长6是长方形两边12和18的因数,能正好铺满;(板书:12÷6=218÷6=3)边长4是12的因数,但不是18的因数,就不能正好铺满。(板书:12÷4=318÷4=4......2)说明:观察正方形和长方形边的长度,6是12的因数,又是18的因数,所以能正好铺满;4是12的因数,但不是18的因数,所以不能正好铺满。(2)启发:想一想,还有哪些边长是整厘米数的正方形,也能把这个长方形正好铺满?为什么?先独立思考,再和同桌说一说,并说说你的理由。交流:还有哪些边长整厘米数的正方形也能正好铺满?你是怎样想的?你发现正方形边长的厘米数符合什么条件,就能把这个长方形正好铺满?说明:边长1厘米、2厘米、3厘米的正方形也能正好铺满这个长方形,因为它们是12的因数,又是18的因数。可见,当正方形边长既是12的因数,又是18的因数时,就能正好把这个长方形铺满。(3)引导:现在你发现,哪些数既是12的因数,又是18的因数?指出:大家发现,1、2、3、6这几个数,既是12的因数,又是18的因数,也就是12和18公有的因数,我们称它们是12和18的公因数。(板书)追问:4是12和18的公因数吗?为什么不是?说明:两个数公有的因数,叫作这两个数的公因数。(接“公因数”后板书:——两个数公有的因数)2.求公因数。(1)出示问题。引导:我们已经知道,两个数公有的因数,是它们的公因数。那如果已知两个数,你能不能找出它们所有的公因数呢?接着看一个问题。出示例10,让学生明确要找出8和12的所有公因数,并找出其中最大的一个。(2)探索方法。引导:先想想怎样的数是8和12的公因数;再想怎样可以找到8和12的公因数。和同桌商量商量,找出它们的公因数,并找出最大的一个。学生思考、尝试,教师巡视、指导。交流:你是怎样找8和12的公因数和最大的公因数的?结合交流,引导学生理解不同思考方法:(在交流中板书过程)①先分别找出8和12的因数,再找公因数,并确定最大的一个。②先找出8的因数,再从8的因数里找12的因数,并确定最大的一个。提问:为什么可以这样找8和12的公因数?说明:因为公因数一定在8的因数里,所以只要在8的因数里找出也是12的因数,就是它们的公因数。③先找12的因数,再从12的因数里找8的因数,并确定最大的一个。追问:这种方法是怎样想的?小结:大家用不同的方法找出了8和12的公因数有1,2,4,其中最大的是4。4是8和12的最大公因数。可见,两个数公因数里最大的一个,就是这两个数的最大公因数o(板书:最大公因数——公因数中最大的一个)3.用集合图表示公因数。出示两个圈:8的因数12的因数(图略)让学生分别说出8和12的因数,教师板书。引导:如果要在图里既看出8的因数和12的因数,又能把公有的因数写在共同的部分,这两个圈怎样合并到一起比较合适?小组里讨论讨论。学生交流,引导出正确表示的方法,呈现把两个圈部分合并的图,(图见教材,略)再引导在合适的部分分别填写因数,并标注出“8和12的公因数”。提问:从图上看,哪些数是8的因数,哪些数是12的因数?哪几个数是8和12的公因数,最大公因数是几?指出:从图上可以直接看出:8和12公有的因数,是它们的公因数,其中最大的一个,是它们的最大公因数。4.回顾内容。提问:回顾今天的学习,我们认识了哪些内容?(板书课题)什么是公因数和最大公因数?三、巩固深化1.做“练一练”第1题。从表里看,怎样的数是18和30的公因数和最大公因数?说明:先在表里分别圈两个数的因数,其中两个数公有的因数,就是两个数的公因数。公因数中最大的一个就是最大公因数。2.做“练一练”第2题。让学生先分别填15和20的因数,再填右图。交流各是怎样填的,说说15和20各有哪些因数,再说说它们的公因数和最大公因数。说明:15和20的因数中公有的因数,就是15和20的公因数,在公因数中就能找出最大公因数。3.做练
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年国际货物买卖合同(食品行业)
- 2024年娄桂与配偶之间的离异合同:共同的决定
- 2024年大型机场航站楼建设分包合同
- 2024年二手房定金合同中的交易风险与防范措施
- 2024年企业信息化建设合同属性与实施计划
- 2024年工程协商合作标准合同
- 2024年债权转为股权的合同范本
- (2024版)针对2024年世界杯赛事转播权的授权合同
- 2024年小区车位分配与购买合同
- 2024年定制:远程医疗服务合同
- 广东省深圳市龙岗区多校2024-2025学年一年级(上)期中语文试卷(含答案部分解析)
- 河南省南阳市2023-2024学年高一上学期期中数学试题含答案
- 统编语文四年级上册第六单元教材解读及集体备课
- 2024年河南省军队文职(临床医学)高频备考核心试题库(含答案详解)
- 2024年档案知识竞赛考试题库300题(含答案)
- (新版)婴幼儿发展引导员(高级)技能鉴定理论试题库资料(含答案)
- 大学生职业规划大赛生涯发展
- 职业发展生涯报告
- 网龙在线测评题库下载
- 《HSK标准教程3》第10课
- GB/T 10125-2021人造气氛腐蚀试验盐雾试验
评论
0/150
提交评论