四川省广安市2023-2024学年高二上数学期末学业水平测试模拟试题含解析_第1页
四川省广安市2023-2024学年高二上数学期末学业水平测试模拟试题含解析_第2页
四川省广安市2023-2024学年高二上数学期末学业水平测试模拟试题含解析_第3页
四川省广安市2023-2024学年高二上数学期末学业水平测试模拟试题含解析_第4页
四川省广安市2023-2024学年高二上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省广安市2023-2024学年高二上数学期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知的周长等于10,,通过建立适当的平面直角坐标系,顶点的轨迹方程可以是()A. B.C. D.2.已知直线和平面,且在上,不在上,则下列判断错误的是()A.若,则存在无数条直线,使得B.若,则存在无数条直线,使得C.若存在无数条直线,使得,则D.若存在无数条直线,使得,则3.已知动点的坐标满足方程,则的轨迹方程是()A. B.C. D.4.已知等比数列中,,则由此数列的奇数项所组成的新数列的前项和为()A. B.C. D.5.在二项式的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,则有理项互不相邻的概率()A. B.C. D.6.七巧板是中国古代劳动人民发明的一种传统智力玩具,它由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为()A. B.C. D.7.已知直线,椭圆.若直线l与椭圆C交于A,B两点,则线段AB的中点的坐标为()A. B.C. D.8.函数y=x3+x2-x+1在区间[-2,1]上的最小值为()A. B.2C.-1 D.-49.2021年4月29日,中国空间站天和核心舱发射升空,这标志着中国空间站在轨组装建造全面展开,我国载人航天工程“三步走”战略成功迈出第三步.到今天,天和核心舱在轨已经九个多月.在这段时间里,空间站关键技术验证阶段完成了5次发射、4次航天员太空出舱、1次载人返回、1次太空授课等任务.一般来说,航天器绕地球运行的轨道近似看作为椭圆,其中地球的球心是这个椭圆的一个焦点,我们把椭圆轨道上距地心最近(远)的一点称作近(远)地点,近(远)地点与地球表面的距离称为近(远)地点高度.已知天和核心舱在一个椭圆轨道上飞行,它的近地点高度大约351km,远地点高度大约385km,地球半径约6400km,则该轨道的离心率为()A. B.C. D.10.已知,条件,条件,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知椭圆与双曲线有共同的焦点,则()A.14 B.9C.4 D.212.执行如图所示的程序框图,输出的s值为()A.8 B.9C.27 D.36二、填空题:本题共4小题,每小题5分,共20分。13.已知数列中,,,则_______.14.已知数列满足,将数列按如下方式排列成新数列:,,,,,,,,,…,,….则新数列的前70项和为______15.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层灯数为_____________16.若函数的递增区间是,则实数______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列中,,且(1)求证:数列是等差数列,并求出;(2)数列前项和为,求18.(12分)已知命题p:直线与双曲线的右支有两个不同的交点,命题q:直线与直线平行.(1)若,判断命题“”的真假;(2)若命题“”为真命题,求实数k的取值范围.19.(12分)已知数列的前n项和为,且.(1)求数列的通项公式;(2)若,设,求数列的前n项和.20.(12分)设Sn是等差数列{an}的前n项和,已知,S2=-3.(1)求{an}的通项公式;(2)若,求数列{bn}的前n项和Tn.21.(12分)如图,在四棱锥中,侧面底面,是以为斜边的等腰直角三角形,,,,点E为的中点.(1)证明:平面;(2)求二面角的余弦值.22.(10分)已知双曲线C的方程为(),离心率为.(1)求双曲线的标准方程;(2)过的直线交曲线于两点,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据椭圆的定义进行求解即可.【详解】因为的周长等于10,,所以,因此点的轨迹是以为焦点的椭圆,且不在直线上,因此有,所以顶点的轨迹方程可以是,故选:A2、D【解析】根据直线和直线,直线和平面的位置关系依次判断每一个选项得到答案.【详解】若,则平行于过的平面与的交线,当时,,则存在无数条直线,使得,A正确;若,垂直于平面中的所有直线,则存在无数条直线,使得,B正确;若存在无数条直线,使得,,,则,C正确;当时,存在无数条直线,使得,D错误.故选:D.3、C【解析】此方程表示点到点的距离与到点的距离之差为8,而这正好符合双曲线的定义,点的轨迹是双曲线的右支,,的轨迹方程是,故选C.4、B【解析】确实新数列是等比数列及公比、首项后,由等比数列前项和公式计算,【详解】由题意,新数列为,所以,,前项和为故选:B.5、A【解析】先根据前三项的系数成等差数列求,再根据古典概型概率公式求结果【详解】因为前三项的系数为,,,当时,为有理项,从而概率为.故选:A.6、D【解析】设正方形的边长为,计算出阴影部分区域的面积和正方形区域的面积,然后利用几何概型的概率公式计算出所求事件的概率.【详解】设大正方形的边长为,则面积为,阴影部分由一个大等腰直角三角形和一个梯形组成大等腰直角三角形的面积为,梯形的上底为,下底为,高为,面积为,故所求概率故选:D.7、B【解析】联立直线方程与椭圆方程,消y得到关于x的一元二次方程,根据韦达定理可得,进而得出中点的横坐标,代入直线方程求出中点的纵坐标即可.【详解】由题意知,,消去y,得,则,,所以A、B两点中点的横坐标为:,所以中点的纵坐标为:,即线段AB的中点的坐标为.故选:B8、C【解析】详解】,令,解得或;令,解得函数在上递增,在递减,在递增,时,取极大值,极大值是时,函数取极小值,极小值是,而时,时,,故函数的最小值为,故选C.9、A【解析】根据远地点和近地点,求出轨道即椭圆的半长轴和半焦距,即可求得答案.【详解】设椭圆的半长轴为a,半焦距为c.则根据题意得;解得,故该轨道即椭圆的离心率为,故选:A10、A【解析】利用“1”的妙用探讨命题“若p则q”的真假,取特殊值计算说明“若q则p”的真假即可判断作答.【详解】因为,由得:,则,当且仅当,即时取等号,因此,,因,,由,取,则,,即,,所以是的充分不必要条件.故选:A11、C【解析】根据给定条件结合椭圆、双曲线方程的特点直接列式计算作答.【详解】设椭圆半焦距为c,则,而椭圆与双曲线有共同的焦点,则在双曲线中,,即有,解得,所以.故选:C12、B【解析】执行程序框图,第一次循环,,满足;第二次循环,,满足;第三次循环,,不满足,输出,故选B.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据递推公式一一计算即可;【详解】解:因为,所以,,,故答案为:14、##2.9375【解析】先根据题干条件得到,再利用错位相减法求前64项和,最后求出前70项和.【详解】①,当时,;当时,②,①-②得:,即又满足,所以由,得令,则,两式相减得,则所以新数列的前70项和为故答案为:15、3【解析】分析:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,利用等比数列前n项和公式能求出结果详解:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,∴S7==381,解得a1=3.故答案为3.点睛:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力.16、【解析】求得二次函数的单调增区间,即可求得参数的值.【详解】因为二次函数开口向上,对称轴为,故其单调增区间为,又由题可知:其递增区间是,故.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)【解析】(1)利用等差数列的定义可证是等差数列,利用等差数列的通项公式可求.(2)利用错位相减法可求.【小问1详解】因为,是以为首项,为公差的等差数列,,.【小问2详解】,,,.18、(1)命题“”为真命题(2)【解析】(1)先判断命题p,命题q的真假,再利用复合命题的真假判断;(2)根据命题“”真命题,由p为真命题,q为假命题求解.【小问1详解】解:对于命题p,易知直线与双曲线的左、右支各有一个交点,∴命题p为假命题;对于命题q,时,有与,显然两条直线垂直,∴命题q为假命题.∴命题“”为真命题.【小问2详解】∵命题“”为真命题,∴p为真命题,q为假命题.对于命题p,由得,直线与双曲线的右支有两个不同的交点,即此方程有两个不同的正根,∴得.对于命题q,要使命题q为真,则,解得,∴命题q为假命题,即.∴实数k的取值范围为.19、(1)(2).【解析】(1)由数列的前n项和与通项公式之间的关系即可完成.(2)由错位相减法即可解决此类“差比”数列的求和.【小问1详解】由,得当时,,上下两式相减得,,又当时,满足上式,所以数列的通项公式;【小问2详解】由(1)可知,所以,则,上下两式相减得,所以.20、(1);(2)【解析】(1)根据所给条件列出方程组,求得,即可求得答案;(2)根据(1)的结果,写出,利用等比数列的前n项和公式求得答案.【小问1详解】设等差数列{an}公差为d,由,得解得所以(n∈N*);【小问2详解】由(1)可知,故,所以21、(1)见解析;(2)【解析】(1)用线线平行证明线面平行,∴在平面PCD内作BE的平行线即可;(2)求二面角的大小,可以用空间向量进行求解,根据已知条件,以AD中点O为原点,OB,AD,OP分别为x、y、z轴建立坐标系﹒【小问1详解】如图,取PD中点F,连接EF,FC﹒∵E是AP中点,∴EFAD,由题知BCAD,∴BCEF,∴BCFE是平行四边形,∴BE∥CF,又CF平面PCD,BE平面PCD,∴BE∥平面PCD;【小问2详解】取AD中点O,连接OP,OB,∵是以为斜边等腰直角三角形,∴OP⊥AD,又平面平面,平面PAD∩平面=AD,∴OP⊥平面ABCD,∵OB平面ABCD,∴OP⊥OB,由BC∥AD,CD⊥AD,AD=2BC知OB⊥OD,∴OP、OB、OD两两垂直,故以O原点,OB、OD、OP分别为x、y、z轴,建立空间直角坐标系Oxyz,如图:设|BC|=1,则B(1,0,0),D(0,1,0),E(0,),P(0,0,1),则,设平面BED的法向量为,平面PBD的法向量为则,取,,取设二面角的大小为θ,则c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论