版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邢台市巨鹿县二中2023年高二上数学期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知A,B,C三点不共线,O是平面ABC外一点,下列条件中能确定点M与点A,B,C一定共面的是A. B.C. D.2.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线,已知△的顶点,,且,则△的欧拉线的方程为()A. B.C. D.3.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别分得,,,,递减的比例为,那么“衰分比”就等于,今共有粮石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得石,甲、丙所得之和为石,则“衰分比”为()A. B.C. D.4.已知双曲线的离心率为,则双曲线C的渐近线方程为()A. B.C. D.5.点分别为椭圆左右两个焦点,过的直线交椭圆与两点,则的周长为()A.32 B.16C.8 D.46.某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着A车和B车,同时进来C,D两车.在C,D不相邻的情况下,C和D至少有一辆与A和B车相邻的概率是()A. B.C. D.7.若双曲线经过点,且它的两条渐近线方程是,则双曲线的方程是()A. B.C. D.8.某班进行了一次数学测试,全班学生的成绩都落在区间内,其成绩的频率分布直方图如图所示,若该班学生这次数学测试成绩的中位数的估计值为,则的值为()A. B.C. D.9.已知定义在R上的函数满足,且有,则的解集为()A. B.C. D.10.已知,,,则最小值是()A.10 B.9C.8 D.711.等差数列的公差为2,若成等比数列,则()A.72 B.90C.36 D.4512.一个几何体的三视图都是半径为1的圆,在该几何体内放置一个高度为1的长方体,则长方体的体积最大值为()A. B.C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知正方体的棱长为2,E为线段中点,F为线段BC上动点,则(1)的最小值为______;(2)点F到直线DE距离的最小值为______.14.将某校全体高一年级学生期末数学成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图,现需要随机抽取60名学生进行问卷调查,采用按成绩分层随机抽样,则应抽取成绩不少于60分的学生人数为_______________.15.若直线:x-2y+1=0与直线:2x+my-1=0相互垂直,则实数m的值为________.16.过抛物线的焦点的直线交抛物线于点、,且点的横坐标为,过点和抛物线顶点的直线交抛物线的准线于点,则的面积为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:上一点与焦点F的距离为(1)求和p的值;(2)直线l:与C相交于A,B两点,求直线AM,BM的斜率之积18.(12分)已知数列的前n项和为,且(1)证明数列是等比数列,并求出数列的通项公式;(2)在与之间插入n个数,使得包括与在内的这个数成等差数列,其公差为,求数列的前n项和19.(12分)在平面直角坐标系中,已知点在椭圆上,其中为椭圆E的离心率(1)求b的值;(2)A,B分别为椭圆E的左右顶点,过点的直线l与椭圆E相交于M,N两点,直线与交于点T,求证:20.(12分)双曲线的离心率为2,经过C的焦点垂直于x轴的直线被C所截得的弦长为12.(1)求C的方程;(2)设A,B是C上两点,线段AB的中点为,求直线AB的方程.21.(12分)已知圆C的圆心在直线上,且过点,(1)求圆C的方程;(2)若圆C与直线交于A,B两点,______,求m的值从下列三个条件中任选一个补充在上面问题中并作答:条件①:;条件②:圆上一点P到直线的最大距离为;条件③:22.(10分)为了解某校今年高一年级女生的身体素质状况,从该校高一年级女生中抽取了一部分学生进行“掷铅球”的项目测试,成绩低于5米为不合格,成绩在5至7米(含5米不含7米)的为及格,成绩在7米至11米(含7米和11米,假定该校高一女生掷铅球均不超过11米)为优秀.把获得的所有数据,分成五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在9米到11米之间(1)求实数的值及参加“掷铅球”项目测试的人数;(2)若从此次测试成绩最好和最差的两组中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生自不同组的概率
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】首先利用坐标法,排除错误选项,然后对符合的选项验证存在使得,由此得出正确选项.【详解】不妨设.对于A选项,,由于的竖坐标,故不在平面上,故A选项错误.对于B选项,,由于的竖坐标,故不在平面上,故B选项错误.对于C选项,,由于的竖坐标,故不在平面上,故C选项错误.对于D选项,,由于的竖坐标为,故在平面上,也即四点共面.下面证明结论一定成立:由,得,即,故存在,使得成立,也即四点共面.故选:D.【点睛】本小题主要考查空间四点共面的证明方法,考查空间向量的线性运算,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.2、D【解析】由题设条件求出垂直平分线的方程,且△的外心、重心、垂心都在垂直平分线上,结合欧拉线的定义,即垂直平分线即为欧拉线.【详解】由题设,可得,且中点为,∴垂直平分线的斜率,故垂直平分线方程为,∵,则△的外心、重心、垂心都在垂直平分线上,∴△的欧拉线的方程为.故选:D3、A【解析】根据题意,设衰分比为,甲分到石,,然后可得和,解出、的值即可【详解】根据题意,设衰分比为,甲分到石,,又由今共有粮食石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得90石,甲、丙所得之和为164石,则,,解得:,,故选:A4、B【解析】根据a的值和离心率可求得b,从而求得渐近线方程.【详解】由双曲线的离心率为,知,则,即有,故,所以双曲线C的渐近线方程为,即,故选:B.5、B【解析】由题意结合椭圆的定义可得,而的周长等于,从而可得答案【详解】解:由得,由题意得,所以的周长等于,故选:B6、B【解析】先求出基本事件总数,和至少有一辆与和车相邻的对立事件是和都不与和车相邻,由此能求出和至少有一辆与和车相邻的概率【详解】解:某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着车和车,同时进来,两车,在,不相邻的条件下,基本事件总数,和至少有一辆与和车相邻的对立事件是和都不与和车相邻,和至少有一辆与和车相邻的概率:故选:B7、A【解析】根据双曲线渐近线方程设出方程,再由其过的点即可求解.【详解】渐近线方程是,设双曲线方程为,又因为双曲线经过点,所以有,所以双曲线方程为,化为标准方程为.故选:A8、A【解析】根据已知条件可得出关于、的方程组,解出这两个量的值,即可求得结果.【详解】由题意有,得,又由,得,解得,,有故选:A.9、A【解析】构造,应用导数及已知条件判断的单调性,而题设不等式等价于即可得解.【详解】设,则,∴R上单调递增.又,则.∵等价于,即,∴,即所求不等式的解集为.故选:A.10、B【解析】利用题设中的等式,把的表达式转化成展开后,利用基本不等式求得的最小值【详解】∵,,,∴=,当且仅当,即时等号成立故选:B11、B【解析】由题意结合成等比数列,有即可得,进而得到、,即可求.【详解】由题意知:,,又成等比数列,∴,解之得,∴,则,∴,故选:B【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量1、由成等比,即;2、等差数列前n项和公式的应用.12、B【解析】根据题意得到几何体为半径为1的球,长方体的体对角线为球的直径时,长方体体积最大,设出长方体的长和宽,得到等量关系,利用基本不等式求解体积最大值.【详解】由题意得:此几何体为半径为1的球,长方体为球的内接长方体时,体积最大,此时长方体的体对角线为球的直径,设长方体长为,宽为,则由题意得:,解得:,而长方体体积为,当且仅当时等号成立,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、①.;②..【解析】建立空间直角坐标系.空一:利用空间两点间距离公式,结合平面两点间距离公式进行求解即可;空二:根据空间向量垂直的性质进行求解即可.【详解】建立如图所示的空间直角坐标系,则有.空一:,代数式表示横轴上一点到点和点的距离之和,如下图所示:设关于横轴的对称点为,当线段与横轴的交点为点时,有最小值,最小值为;空二:设,为垂足,则有,,,因为,所以,因此,化简得:,当时,即时,此时,有最小值,即最小值为,故答案为:;【点睛】关键点睛:利用空间向量垂直的性质进行求解是解题的关键.14、48【解析】根据频率分布直方图,求出成绩不少于分的频率,然后根据频数频率总数,即可求出结果【详解】根据频率分布直方图,成绩不低于(分)的频率为,由于需要随机抽取名学生进行问卷调查,利用样本估计总体的思想,则应抽取成绩不少于60分的学生人数为人故答案为:15、1【解析】由两条直线垂直可知,进而解得答案即可.【详解】因为两条直线垂直,所以.故答案为:1.16、##【解析】不妨设点为第一象限内的点,求出点的坐标,可求得直线、的方程,求出点、的坐标,可求得以及点到直线的距离,利用三角形的面积公式可求得的面积.【详解】不妨设点为第一象限内的点,设点,其中,则,可得,即点,抛物线的焦点为,,所以,直线的方程为,联立,解得或,即点,所以,,直线的方程为,抛物线的准线方程为,联立,可得点,点到直线的距离为,因此,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)结合抛物线的定义以及点坐标求得以及.(2)求得的坐标,由此求得直线AM,BM的斜率之积.【小问1详解】依题意抛物线C:上一点与焦点F的距离为,根据抛物线的定义可知,将点坐标代入抛物线方程得.【小问2详解】由(1)得抛物线方程为,,不妨设A在B下方,所以.18、(1)证明见解析,(2)【解析】(1)根据公式得到,得到,再根据等比数列公式得到答案.(2)根据等差数列定义得到,再利用错位相减法计算得到答案.【小问1详解】,当时,,得到;当时,,两式相减得到,整理得到,即,故,数列是首项为,公比为的等比数列,,即,验证时满足条件,故.【小问2详解】,故,,,两式相减得到:,整理得到:,故.19、(1)1(2)证明见解析【解析】(1)根据点在椭圆E上建立方程,结合,然后解出方程即可;(2)联立直线与椭圆的方程,表示出直线与,求得交点的坐标,再分别表示出直线和的斜率并作差,通过韦达定理证明直线和的斜率相等即可.【小问1详解】由点在椭圆E上,得:又,即解得:【小问2详解】依题意,得,且直线l与x轴不会平行设直线l的方程为,,由方程组消去x可得:则有:,且直线的方程为,直线的方程为由方程组可得:设直线的斜率分别是,则有:可得:又可得:故【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程时,务必考虑全面,不要忽略直线斜率为或不存在等特殊情形请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分20、(1)(2)【解析】(1)根据已知条件求得,由此求得的方程.(2)结合点差法求得直线的斜率,从而求得直线的方程.【小问1详解】因为C的离心率为2,所以,可得.将代入可得,由题设.解得,,,所以C的方程为.【小问2详解】设,,则,.因此,即.因为线段AB的中点为,所以,,从而,于是直线AB的方程是.21、(1)(2)【解析】(1)根据圆心在过点,的线段的中垂线上,同时圆心圆心在直线上,可求出圆心的坐标,进而求得半径,最后求出其标准方程;(2)选①利用用垂径定理可求得答案,选②根据圆上一点P到直线的最大距离为可求得答案,选③先利用向量的数量积可求得,解法就和选①时相同.【小问1详解】由题意可知,圆心在点的中垂线上,该中垂线的方程为,于是,由,解得圆心,圆C的半径所以,圆C的方程为;【小问2详解】①,因为,,所以圆心C到直线l的距离,则,解得,②,圆上一点P到直线的最大距离为,可知圆心C到直线l的距离则,解得,③,因为,所以,得,又,所以圆心C到直线l的距离,则,解得22、(1)0.05,40;(2)【解析】(1)因为由频率分布直方图可得共五组的频率和为1所以可得一个关于的等式,即可求出的值.再根据已知有4名学生的成绩在9米到11米之间,可以求出本次参加“掷铅球”项目测试的人数.本小题要根据所给的图表及直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西南医科大学《微机原理及接口》2023-2024学年第一学期期末试卷
- 西南交通大学《计算机辅助设计》2019-2020学年第一学期期末试卷
- 西京学院《景观小品设计》2021-2022学年第一学期期末试卷
- 西京学院《插画设计》2023-2024学年第一学期期末试卷
- 西华大学《计算机组成原理》2022-2023学年第一学期期末试卷
- 西北大学《物理讲坛》2021-2022学年第一学期期末试卷
- 精细化工发展潜力分析
- 数字电压表的课程设计
- 中国生活用纸行业投资前景分析及未来发展趋势研究报告(智研咨询发布)
- 《农药基础知识》课件
- 钢结构工程施工难点及解决措施
- 中国民俗文化概说(山东联盟)智慧树知到答案2024年青岛理工大学
- 八年级上册美术-4《用色彩表达情感》【课件】
- 2024-2030年中国细胞免疫治疗行业市场深度分析及发展前景与投资研究报告
- 药品采购购销合同范本
- 船舶交易居间协议
- 医疗耗材供应项目实施方案
- 统编版语文六年级上册第6单元大单元作业设计
- JBT 12727.5-2016 无损检测仪器 试样 第5部分:渗透检测试样
- 外观标准完整版本
- 25《古人谈读书》(第2课时) (教学设计)2023-2024学年统编版语文五年级上册
评论
0/150
提交评论