安徽省“庐巢六校联盟”2023年数学高二上期末质量跟踪监视模拟试题含解析_第1页
安徽省“庐巢六校联盟”2023年数学高二上期末质量跟踪监视模拟试题含解析_第2页
安徽省“庐巢六校联盟”2023年数学高二上期末质量跟踪监视模拟试题含解析_第3页
安徽省“庐巢六校联盟”2023年数学高二上期末质量跟踪监视模拟试题含解析_第4页
安徽省“庐巢六校联盟”2023年数学高二上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省“庐巢六校联盟”2023年数学高二上期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知各项均为正数且单调递减的等比数列满足、、成等差数列.其前项和为,且,则()A. B.C. D.2.下列数列是递增数列的是()A. B.C. D.3.如图所示,过抛物线的焦点F的直线依次交抛物线及准线于点A,B,C.若,且,则抛物线的方程为()A. B.C. D.4.如果一个矩形长与宽的比值为,那么称该矩形为黄金矩形.如图,已知是黄金矩形,,分别在边,上,且也是黄金矩形.若在矩形内任取一点,则该点取自黄金矩形内的概率为()A. B.C. D.5.在等比数列中,,且,则t=()A.-2 B.-1C.1 D.26.已知圆的方程为,则圆心的坐标为()A. B.C. D.7.已知f(x)=x3+(a-1)x2+x+1没有极值,则实数a的取值范围是()A.[0,1] B.(-∞,0]∪[1,+∞)C.[0,2] D.(-∞,0]∪[2,+∞)8.已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数n的值是()A. B.C. D.9.已知函数有两个极值点m,n,且,则的最大值为()A. B.C. D.10.正方体的表面积为,则正方体外接球的表面积为(

)A. B.C. D.11.已知正实数x,y满足4x+3y=4,则的最小值为()A. B.C. D.12.过点且与直线垂直的直线方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过点作圆的切线,则切线的方程为________14.已知O为坐标原点,,是抛物线上的两点,且满足,则______;若OM垂直AB于点M,且为定值,则点Q的坐标为__________.15.在等比数列中,若,是方程两根,则________.16.若两定点A,B的距离为3,动点M满足,则M点的轨迹围成区域的面积为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,=2,且,⊥底面ABC.E为AB中点(1)求证:平面;(2)求平面与平面CEB夹角的余弦值18.(12分)如图,已知三棱锥的侧棱,,两两垂直,且,,是的中点.(1)求异面直线与所成角的余弦值;(2)求点到面的距离.(3)求二面角的平面角的正切值.19.(12分)如图,在四棱锥P­ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M为PC上一点,且PM=2MC.(1)求证:BM∥平面PAD;(2)若AD=2,PD=3,∠BAD=60°,求三棱锥P­ADM的体积20.(12分)物联网(Internetofthings)是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络,具有十分广阔的市场前景.现有一家物流公司计划租地建造仓库存储货物,经过市场调查了解到下列信息:仓库每月土地占地费(单位:万元)与仓库到车站的距离x(单位:千米)之间的关系为,每月库存货物费(单位:万元)与x之间的关系为:;若在距离车站11.5千米建仓库,则和分别为4万元和23万元.(1)求的值;(2)这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?21.(12分)在数列中,,,且对任意的,都有.(1)数列的通项公式;(2)设数列,求数列的前项和.22.(10分)如图,在棱长为2的正方体中,,分别为线段,的中点.(1)求点到平面的距离;(2)求平面与平面夹角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先根据,,成等差数列以及单调递减,求出公比,再由即可求出,再根据等比数列通项公式以及前项和公式即可求出.【详解】解:由,,成等差数列,得:,设的公比为,则,解得:或,又单调递减,,,解得:,数列的通项公式为:,.故选:C2、C【解析】分别判断的符号,从而可得出答案.【详解】解:对于A,,则,所以数列为递减数列,故A不符合题意;对于B,,则,所以数列为递减数列,故B不符合题意;对于C,,则,所以数列为递增数列,故C符合题意;对于D,,则,所以数列递减数列,故D不符合题意.故选:C.3、A【解析】分别过点作准线的垂线,分别交准线于点,,设,推出;根据,进而推导出,结合抛物线定义求出;最后由相似比推导出,即可求出抛物线的方程.【详解】如图分别过点作准线的垂线,分别交准线于点,,设与交于点.设,,,由抛物线定义得:,故在直角三角形中,,,,,,,∥,,,即,,所以抛物线的方程为.故选:A4、B【解析】由几何概型的面积型,只需求小矩形的面积和大矩形面积之比.【详解】由题意,不妨设,则,又也是黄金矩形,则,又,解得,于是大矩形面积为:,小矩形的面积为,由几何概型的面积型,概率为若在矩形内任取一点,则该点取自黄金矩形内的概率为:.故选:B.5、A【解析】先求出,利用等比中项求出t.【详解】在等比数列中,,且,所以所以,即,解得:.当时,,不符合等比数列的定义,应舍去,故.故选:A.6、A【解析】将圆的方程配成标准方程,可求得圆心坐标.【详解】圆的标准方程为,圆心的坐标为.故选:A.7、C【解析】求导得,再解不等式即得解.【详解】由得,根据题意得,解得故选:C8、C【解析】首先根据抛物线焦半径公式得到,从而得到,再根据曲线的一条渐近线与直线AM平行,斜率相等求解即可.【详解】由题知:,解得,抛物线.双曲线的左顶点为,,因为双曲线的一条渐近线与直线平行,所以,解得.故选:C9、C【解析】对求导得,得到m,n是两个根,由根与系数的关系可得m,n的关系,然后构造函数,利用导数求单调性,进而得最值.【详解】由得:m,n是两个根,由根与系数的关系得:,故,令记,则,故在上单调递减.故选:C10、B【解析】由正方体表面积求得棱长,再求得正方体的对角线长,即为外接球的直径,从而可得球表面积【详解】设正方体棱长为,由得,正方体对角线长,所以其外接球半径为,球表面积为故选:B11、A【解析】将4x+3y=4变形为含2x+1和3y+2的等式,即2(2x+1)+(3y+2)=8,再由换元法、基本不等式换“1”的代换求解即可【详解】由正实数x,y满足4x+3y=4,可得2(2x+1)+(3y+2)=8,令a=2x+1,b=3y+2,可得2a+b=8,∴,即,当且仅当时取等号,∴的最小值为.故选:A12、C【解析】根据两直线垂直时斜率乘积为,可以直接求出所求直线的斜率,再根据点斜式求出直线方程,最后化成一般式方程即可.【详解】因为直线的斜率为,故所求直线的斜率等于,所求直线的方程为,即,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知可得点M在圆C上,则过M作圆的切线与CM所在的直线垂直,求出斜率,进而可得直线方程.【详解】由圆得到圆心C的坐标为(0,

0),圆的半径,而所以点M在圆C上,则过M作圆的切线与CM所在的直线垂直,又,得到CM所在直线的斜率为,所以切线的斜率为,则切线方程为:即故答案为:.14、①.-24②.【解析】由抛物线的方程及数量积的运算可求出,设直线AB的方程为,联立抛物线方程,由根与系数的关系可求出,由圆的定义求出圆心即可.【详解】由,即解得或(舍去).设直线AB的方程为.由,消去x并整理得,.又,,直线AB恒过定点N(6,0),OM垂直AB于点M,点M在以ON为直径圆上.|MQ|为定值,点Q为该圆的圆心,又即Q(3,0).故答案为:;15、.【解析】由题意求得,,再结合等比数列的性质,即可求解.【详解】由题意知,,是方程的两根,可得,,又由,,所以,,可得,又由,所以.故答案为:.【点睛】本题主要考查了等比数列的通项公式,以及等比数列的性质的应用,其中解答中熟练应用等比数列的性质是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】建立如图直角坐标系,设点,根据题意和两点坐标求距离公式可得,结合圆的面积公式计算即可.【详解】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,如图,设点,则,由,化简并整理得:,于是得点M轨迹是以点为圆心,2为半径的圆,其面积为,所以M点的轨迹围成区域的面积为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)连接与交于点O,连接OE,得到,再利用线面平行的判定定理证明即可;(2)根据,底面,建立空间直角坐标系,求得平面的一个法向量,再根据底面,得到平面一个法向量,然后由夹角公式求解.【小问1详解】如图所示:连接与交于点O,连接OE,如图,由分别为的中点所以,又平面,平面,所以平面;【小问2详解】由,底面,故底面建立如图所示空间直角坐标系:则,所以,设平面的一个法向量为:,则,即,令,则,则,因为底面,所以为平面一个法向量,所以所以平面与平面CEB夹角的余弦值为.18、(1);(2);(3).【解析】(1)首先以为原点,、、分别为、、轴建立空间直角坐标系,利用向量求;(2)首先求平面的法向量,再利用公式求解;(3)求平面的法向量为,先求,再求二面角的正切值.【详解】(1)以为原点,、、分别为、、轴建立空间直角坐标系.则有、、、.,,所以异面直线与所成角的余弦为(2)设平面的法向量为,则知:;知取,又,点到面的距离所以点到面的距离为.(3)(2)中已求平面的法向量,设平面的法向量为∵;∴取..设二面角的平面角为,则.【点睛】本题考查空间直角坐标系求解空间角和点到平面的距离,重点考查计算能力,属于中档题型.19、(1)证明见解析;(2).【解析】(1)过M作MN∥CD交PD于点N,证明四边形ABMN为平行四边形,即可证明BM∥平面PAD.(2)过B作AD的垂线,垂足为E,证明BE⊥平面PAD,在利用VP-ADM=VM-PAD求三棱锥P-ADM的体积.【详解】解:(1)证明:如图,过M作MN∥CD交PD于点N,连接AN.∵PM=2MC,∴MN=CD.又AB=CD,且AB∥CD∴AB∥MN∴四边形ABMN为平行四边形∴BM∥AN.又BM⊄平面PAD,AN⊂平面PAD∴BM∥平面PAD.(2)如图,过B作AD的垂线,垂足为E.∵PD⊥平面ABCD,BE⊂平面ABCD∴PD⊥BE.又AD⊂平面PAD,PD⊂平面PAD,AD∩PD=D∴BE⊥平面PAD.由(1)知,BM∥平面PAD∴点M到平面PAD的距离等于点B到平面PAD的距离,即BE.连接BD,在△ABD中,AB=AD=2,∠BAD=60°,∴BE=则三棱锥P­ADM的体积VP-ADM=VM-PAD=×S△PAD×BE=×3×=.20、(1)(2)这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小,最小费用是万元【解析】(1)将题中数据代入解析式可求;(2)利用基本不等式可求解.【小问1详解】由题意,,当时,,,解得.【小问2详解】设两项费用之和为(单位:万元),则.因为,所以,所以,当且仅当时等号成立,解得.所以这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小,最小费用是万元.21、(1);(2).【解析】(1)由递推式可得,根据等比数列的定义写出通项公式,再由累加法求的通项公式;(2)由(1)可得,再应用裂项相消法求前项和【小问1详解】由可得:,又,,∴,则数列是首项为2,公比为2的等比数列,∴.∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论