2023-2024学年湖南省东安县天成实验学校数学高二上期末教学质量检测试题含解析_第1页
2023-2024学年湖南省东安县天成实验学校数学高二上期末教学质量检测试题含解析_第2页
2023-2024学年湖南省东安县天成实验学校数学高二上期末教学质量检测试题含解析_第3页
2023-2024学年湖南省东安县天成实验学校数学高二上期末教学质量检测试题含解析_第4页
2023-2024学年湖南省东安县天成实验学校数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖南省东安县天成实验学校数学高二上期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线为抛物线的准线,直线经过抛物线的焦点,与抛物线交于点,则的最小值为()A. B.C.4 D.82.在空间直角坐标系中,已知,,则MN的中点P到坐标原点О的距离为()A. B.C.2 D.33.过点A(3,3)且垂直于直线的直线方程为A. B.C. D.4.命题:“x>0,都有x2-x+1≤0”的否定是()A.x>0,使得x2-x+1≤0 B.x>0,使得x2-x+1>0C.x>0,都有x2-x+1>0 D.x≤0,都有x2-x+1>05.已知数列的通项公式为,则()A.12 B.14C.16 D.186.阅读程序框图,该算法的功能是输出A.数列的第4项 B.数列的第5项C.数列的前4项的和 D.数列的前5项的和7.直线与圆的位置关系是()A.相交 B.相切C.相离 D.相交或相切8.已知椭圆与双曲线有共同的焦点,则()A.14 B.9C.4 D.29.若直线被圆截得的弦长为,则的最小值为()A. B.C. D.10.如图是函数的导函数的图象,下列说法正确的是()A.函数在上是增函数B.函数在上是减函数C.是函数的极小值点D.是函数的极大值点11.已知椭圆C:的左,右焦点,过原点的直线l与椭圆C相交于M,N两点.其中M在第一象限.,则椭圆C的离心率的取值范围为()A. B.C. D.12.已知,,,则最小值是()A.10 B.9C.8 D.7二、填空题:本题共4小题,每小题5分,共20分。13.已知函数(1)若时函数有三个互不相同的零点,求实数的取值范围;(2)若对任意的,不等式在上恒成立,求实数的取值范围14.若把英语单词“”的字母顺序写错了,则可能出现的错误有______种15.设为等差数列的前n项和,若,,则______16.若,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)同时抛掷两颗骰子,观察向上点数.(1)试表示“出现两个1点”这个事件相应的样本空间的子集;(2)求出现两个1点”的概率;(3)求“点数之和为7”的概率.18.(12分)在△ABC中,角A、B、C所对的边分别为a、b、c,角A、B、C的度数成等差数列,(1)若,求c的值;(2)求最大值19.(12分)设数列的前项和为,已知,且.(1)证明:数列为等比数列;(2)若,是否存在正整数,使得对任意恒成立?若存在、求的值;若不存在,说明理由.20.(12分)已知圆经过,且圆心C在直线上(1)求圆的标准方程;(2)若直线:与圆存在公共点,求实数的取值范围21.(12分)已知,,分别为三个内角,,的对边,.(Ⅰ)求;(Ⅱ)若=2,的面积为,求,.22.(10分)已知在等差数列中,,(1)求的通项公式;(2)若,求数列的前项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求抛物线的方程,再联立直线方程和抛物线方程,由弦长公式可求的最小值.【详解】因为直线为抛物线的准线,故即,故抛物线方程为:.设直线,则,,而,当且仅当等号成立,故的最小值为8,故选:D.2、A【解析】利用中点坐标公式及空间中两点之间的距离公式可得解.【详解】,,由中点坐标公式,得,所以.故选:A3、D【解析】过点A(3,3)且垂直于直线的直线斜率为,代入过的点得到.故答案为D.4、B【解析】全称命题的否定是特称命题,把任意改为存在,把结论否定.【详解】“x>0,都有x2-x+1≤0”的否定是“x>0,使得x2-x+1>0”.故选:B5、D【解析】利用给定的通项公式直接计算即得.【详解】因数列的通项公式为,则有,所以.故选:D6、B【解析】分析:模拟程序的运行,依次写出每次循环,直到满足条件,退出循环,输出A的值即可详解:模拟程序的运行,可得:

A=0,i=1执行循环体,,

不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,满足条件,退出循环,输出A的值为31.观察规律可得该算法的功能是输出数列{}的第5项.所以B选项是正确的.点睛:模拟程序的运行,依次写出每次循环得到的A,i的值,当i=6时满足条件,退出循环,输出A的值,观察规律即可得解.7、A【解析】由直线恒过定点,且定点圆内,从而即可判断直线与圆相交.【详解】解:因为直线恒过定点,而,所以定点在圆内,所以直线与圆相交,故选:A.8、C【解析】根据给定条件结合椭圆、双曲线方程的特点直接列式计算作答.【详解】设椭圆半焦距为c,则,而椭圆与双曲线有共同的焦点,则在双曲线中,,即有,解得,所以.故选:C9、D【解析】先根据已知条件得出,再利用基本不等式求的最小值即可.【详解】圆的标准方程为,圆心为,半径为,若直线被截得弦长为,说明圆心在直线:上,即,即,∴,当且仅当,即时,等号成立故选:D.【点睛】本题主要考查利用基本不等式求最值,本题关键是求出,属常规考题.10、A【解析】根据图象,结合导函数的正负性、极值的定义逐一判断即可.【详解】由图象可知,当时,;当时,,在上单调递增,在上单调递减,可知B错误,A正确;是极大值点,没有极小值,和不是函数的极值点,可知C,D错误故选:A11、D【解析】由题设易知四边形为矩形,可得,结合已知条件有即可求椭圆C的离心率的取值范围.【详解】由椭圆的对称性知:,而,又,即四边形为矩形,所以,则且M在第一象限,整理得,所以,又即,综上,,整理得,所以.故选:D.【点睛】关键点点睛:由椭圆的对称性及矩形性质可得,由已知条件得到,进而得到椭圆参数的齐次式求离心率范围.12、B【解析】利用题设中的等式,把的表达式转化成展开后,利用基本不等式求得的最小值【详解】∵,,,∴=,当且仅当,即时等号成立故选:B二、填空题:本题共4小题,每小题5分,共20分。13、(1)(2)【解析】(1)将函数有三个互不相同的零点转化为有三个互不相等的实数根,令,求导确定单调性求出极值即可求解;(2)求导确定单调性,结合以及得,由得,结合二次函数单调性求出最小值即可求解.【小问1详解】当时,.函数有三个互不相同的零点,即有三个互不相等的实数根令,则,令得或,在和上均减函数,在上为增函数,极小值为,极大值为,的取值范围是;【小问2详解】,且,当或时,;当时,函数的单调递增区间为和,单调递减区间为当时,,又,,又,又在上恒成立,即,即当时,恒成立在上单减,故最小值为,的取值范围是14、23【解析】先计算该单词所有字母能够组成的所有排列情况,然后减去正确的,即是可能出现错误的情况.【详解】因为“”四个字母组成的全排列共有(种)结果,其中只有排列“”是正确的,其余全是错误的,故可能出现错误的共有(种).故答案为:23.15、36【解析】利用等差数列前n项和的性质进行求解即可.【详解】因为为等差数列的前n项和,所以也成等差数列,即成等差数列,所以,故答案为:16、2【解析】首先利用二项展开式的通项公式,求,再利用赋值法求系数的和以及【详解】展开式的通项为,令,则,即,故,令,得.又,所以故故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)由题意直接写出基本事件即可得出答案.(2)样本空间一共有个基本事件,由(1)可得答案.(3)列出“点数之和为7”的基本事件,从而可得答案.【小问1详解】“同时抛掷两颗骰子”的样本空间是{1,2,…,6;1,2,…,6},其中i、j分别是抛掷第一颗与第二颗骰子所得的点数.将“出现两个1点”这个事件用A表示,则事件A就是子集.【小问2详解】样本空间一共有个基本事件,它们是等可能的,从而“出现两个1点”的概率为.小问3详解】将“点数之和为7”这个事件用B表示,则{,,,,,},事件B共有6个基本事件,从而“点数之和为7”的概率为.18、(1);(2)【解析】(1)利用等差数列以及三角形内角和,正弦定理以及余弦定理求解即可;(2)利用正弦定理以及两角和与差的三角函数,结合三角函数的最值求解即可【详解】(1)由角A、B、C的度数成等差数列,得2B=A+C又,∴由正弦定理,得,即由余弦定理,得,即,解得(2)由正弦定理,得,∴,∴由,得所以当时,即时,19、(1)证明见解析(2)【解析】(1)由已知条件有,根据等比数列的定义即可证明;(2)由(1)求出及,进而可得,利用二次函数的性质即可求解的最小值,从而可得答案.【小问1详解】证明:因为,所以,又因为,所以,所以数列是首项为2公比为2的等比数列;【小问2详解】解:由(1)知,,所以,所以,检验时也满足上式,所以,所以,令,所以,故当即时,取得最小值,所以.20、(1)(2)【解析】(1)因为圆心在直线上,可设圆心坐标为,利用圆心到圆上两点的距离相等列出等式求解即可.(2)直线与圆存在公共点,即圆心到直线的距离小于等于半径,列出不等关系求解即可.【小问1详解】解:因为圆心在直线上,所以设圆心坐标为,因为圆经过,,所以,即:,解方程得,圆心坐标为,半径为,圆的标准方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论