2023-2024学年海南省澄迈县澄迈中学高二数学第一学期期末复习检测试题含解析_第1页
2023-2024学年海南省澄迈县澄迈中学高二数学第一学期期末复习检测试题含解析_第2页
2023-2024学年海南省澄迈县澄迈中学高二数学第一学期期末复习检测试题含解析_第3页
2023-2024学年海南省澄迈县澄迈中学高二数学第一学期期末复习检测试题含解析_第4页
2023-2024学年海南省澄迈县澄迈中学高二数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年海南省澄迈县澄迈中学高二数学第一学期期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则()A. B.1C. D.2.南宋数学家杨辉在《详解九章算术法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次成等差数列.如数列1,3,6,10,前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.现有二阶等差数列,其前7项分别为2,3,5,8,12,17,23,则该数列的第31项为()A.336 B.467C.483 D.6013.双曲线C:的渐近线方程为()A. B.C. D.4.已知数列的首项为,且,若,则的取值范围是()A. B.C. D.5.已知在直角坐标系xOy中,点Q(4,0),O为坐标原点,直线l:上存在点P满足.则实数m的取值范围是()A. B.C. D.6.在的展开式中,只有第4项的二项式系数最大,且所有项的系数和为0,则含的项的系数为()A.-20 B.-15C.-6 D.157.阿基米德曾说过:“给我一个支点,我就能撬动地球”.他在做数学研究时,有一个有趣的问题:一个边长为2的正方形内部挖了一个内切圆,现在以该内切圆的圆心且平行于正方形的一边的直线为轴旋转一周形成几何体,则该旋转体的体积为()A. B.C. D.8.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.59.如图,在直三棱柱中,且,点E为中点.若平面过点E,且平面与直线AB所成角和平面与平面所成锐二面角的大小均为30°,则这样的平面有()A.1个 B.2个C.3个 D.4个10.将一张坐标纸折叠一次,使点与重合,求折痕所在直线是()A. B.C. D.11.已知抛物线的焦点为F,点P为该抛物线上的动点,若,则当最大时,()A. B.1C. D.212.已知直线与直线垂直,则a=()A.3 B.1或﹣3C.﹣1 D.3或﹣1二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,则_____________.14.若,满足约束条件,则的最大值为_____________15.美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画切面圆柱体(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体,原圆柱的母线被截面所截剩余的部分称为切面圆柱体的母线)的过程中,发现“切面”是一个椭圆,若切面圆柱体的最长母线与最短母线所确定的平面截切面圆柱体得到的截面图形是有一个底角为45°的直角梯形(如图所示),则该椭圆的离心率为_____.16.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数.用一点(或一个小石子)代表1,两点(或两个小石子)代表2,三点(或三个小石子)代表3,…他们研究了各种平面数(包括三角形数、正方形数、长方形数、五边形数、六边形数等等)和立体数(包括立方数、棱锥数等等).如前四个四棱锥数为第n个四棱锥数为1+4+9+…+n2=.中国古代也有类似的研究,如图的形状出现在南宋数学家杨辉所著的《详解九章算法•商功》中,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,…若一个“三角垛”共有20层,则第6层有____个球,这个“三角垛”共有______个球三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知三棱锥的侧棱,,两两垂直,且,,是的中点.(1)求异面直线与所成角的余弦值;(2)求点到面的距离.(3)求二面角的平面角的正切值.18.(12分)数列的前n项和为,(1)求数列的通项公式;(2)令,求数列的前n项和19.(12分)在平面直角坐标系中,设椭圆()的离心率是e,定义直线为椭圆的“类准线”,已知椭圆C的“类准线”方程为,长轴长为8.(1)求椭圆C的标准方程;(2)O为坐标原点,A为椭圆C的右顶点,直线l交椭圆C于E,F两不同点(点E,F与点A不重合),且满足,若点P满足,求直线的斜率的取值范围.20.(12分)如图,在长方体中,底面是正方形,O是的中点,(1)证明:(2)求直线与平面所成角的正弦值21.(12分)已知函数.(1)记函数,当时,讨论函数的单调性;(2)设,若存在两个不同的零点,证明:为自然对数的底数).22.(10分)为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12(1)第二小组的频率是多少?样本量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?(3)样本中不达标的学生人数是多少?(4)第三组的频数是多少?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先根据共轭复数的定义可得,再根据复数的运算法则即可求出【详解】因为,所以故选:B2、B【解析】先由递推关系利用累加法求出通项公式,直接带入即可求得.【详解】根据题意,数列2,3,5,8,12,17,23……满足,,所以该数列的第31项为.故选:B3、D【解析】根据给定的双曲线方程直接求出其渐近线方程作答.【详解】双曲线C:的实半轴长,虚半轴长,即有,而双曲线C的焦点在y轴上,所以双曲线C的渐近线的方程为,即.故选:D4、C【解析】由题意,得到,利用叠加法求得,结合由,转化为恒成立,分,和三种情况讨论,即可求解.【详解】因为,可得,所以,所以,各式相加可得,所以,由,可得恒成立,整理得恒成立,当时,,不等式可化为恒成立,所以;当时,,不等式可化为恒成立;当时,,不等式可化为恒成立,所以,综上可得,实数的取值范围是.故选:C.5、A【解析】根据给定直线设出点P的坐标,再借助列出关于的不等式,然后由不等式有解即可计算作答.【详解】因点P在直线l:上,则设,于是有,而,因此,,即,依题意,上述关于的一元二次不等式有实数解,从而有,解得,所以实数m的取值范围是.故选:A6、C【解析】先由只有第4项的二项式系数最大,求出n=6;再由展开式的所有项的系数和为0,用赋值法求出,用通项公式求出的项的系数.【详解】∵在的展开式中,只有第4项的二项式系数最大,∴在的展开式有7项,即n=6;而展开式的所有项的系数和为0,令x=1,代入,即,所以.∴是展开式的通项公式为:,要求含的项,只需,解得,所以系数为.故选:C7、B【解析】根据题意,结合圆柱和球的体积公式进行求解即可.【详解】由题意可知:该旋转体的体积等于底面半径为,高为的圆柱的体积减去半径为的球的体积,即,故选:B8、C【解析】作出不等式组对应的可行域,再利用数形结合分析求解.【详解】解:作出不等式组对应的可行域为如图所示的阴影部分区域,由得,它表示斜率为纵截距为的直线系,当直线平移到点时,纵截距最大,最大.联立直线方程得得.所以.故选:C9、B【解析】构造出长方体,取中点连接然后利用临界位置分情况讨论即可.【详解】如图,构造出长方体,取中点,连接则所有过点与成角的平面,均与以为轴的圆锥相切,过点绕且与成角,当与水平面垂直且在面的左侧(在长方体的外面)时,与面所成角为75°(与面成45°,与成30°),过点绕旋转,转一周,90°显然最大,到了另一个边界(在面与之间)为15度,即与面所成角从75°→90°→15°→90°→75°变化,此过程中,有两次角为30

,综上,这样的平面α有2个,故选:B.10、D【解析】设,,则折痕所在直线是线段AB的垂直平分线,故求出AB中点坐标,折痕与直线AB垂直,进而求出斜率,用点斜式求出折痕所在直线方程.【详解】,,所以与的中点坐标为,又,所以折痕所在直线的斜率为1,故折痕所在直线是,即.故选:D11、B【解析】根据抛物线的定义,结合换元法、配方法进行求解即可.【详解】因为点P为该抛物线上的动点,所以点P的坐标设为,抛物线的焦点为F,所以,抛物线的准线方程为:,因此,令,,当时,即当时,有最大值,最大值为1,此时.故选:B12、D【解析】根据,得出关于的方程,即可求解实数的值.【详解】直线与直线垂直,所以,解得或.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题设可得,应用累加法有,结合已知即可求.【详解】由题设,,所以,又,所以.故答案为:.14、6【解析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由,可得,画出直线,将其上下移动,结合的几何意义,可知当直线在y轴截距最大时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.15、【解析】设圆柱的底面半径为,由题意知,,椭圆的长轴长,短轴长为,可以求出的值,即可得离心率.【详解】设圆柱的底面半径为,依题意知,最长母线与最短母线所在截面如图所示从而因此在椭圆中长轴长,短轴长,,故答案为:16、①.21②.1540【解析】根据题中给出的图形,结合题意找到各层球的数列与层数的关系,得到=,由此可求的值,以及前20层的总球数【详解】由题意可知,,故==,所==21,所以S20=a1+a2+a3+a4+⋯⋯+a20=(12+22+32+⋯⋯+202)+(1+2+3+⋯⋯+20)=×+×=1540故答案为:21;1540三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)首先以为原点,、、分别为、、轴建立空间直角坐标系,利用向量求;(2)首先求平面的法向量,再利用公式求解;(3)求平面的法向量为,先求,再求二面角的正切值.【详解】(1)以为原点,、、分别为、、轴建立空间直角坐标系.则有、、、.,,所以异面直线与所成角的余弦为(2)设平面的法向量为,则知:;知取,又,点到面的距离所以点到面的距离为.(3)(2)中已求平面的法向量,设平面的法向量为∵;∴取..设二面角的平面角为,则.【点睛】本题考查空间直角坐标系求解空间角和点到平面的距离,重点考查计算能力,属于中档题型.18、(1);(2).【解析】(1)根据给定条件结合“当时,”计算作答.(2)由(1)求出,利用裂项相消法计算得解.【小问1详解】数列的前n项和为,,当时,,当时,,满足上式,则,所以数列的通项公式是【小问2详解】由(1)知,,所以,所以数列的前n项和19、(1);(2).【解析】(1)由题意列关于,,的方程,联立方程组求得,,,则椭圆方程可求;(2)分直线轴与直线l不垂直于x轴两种情况讨论,当直线l不垂直于x轴时,设,,直线l:(,),联立直线方程与椭圆方程,消元由,得到,再列出韦达定理,由则,解得,再由,求出的坐标,则,再利用基本不等式求出取值范围;【详解】解:(1)由题意得:,,又,联立以上可得:,,,椭圆C的方程为.(2)由(1)得,当直线轴时,又,联立得,解得或,所以,此时,直线的斜率为0.当直线l不垂直于x轴时,设,,直线l:(,),联立,整理得,依题意,即(*)且,.又,,,即,且t满足(*),,,故直线的斜率,当时,,当且仅当,即时取等号,此时;当时,,当且仅当,即时取等号,此时;综上,直线的斜率的取值范围为.【点睛】本题考查利用待定系数法求椭圆方程,直线与椭圆的综合应用,属于难题.20、(1)证明见解析(2)【解析】(1)以A为坐标原点,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,令,可得的坐标,再求数量积可得答案;(2)求出平面的法向量、的坐标,由线面角的向量求法可得答案.【小问1详解】在长方体中,以A为坐标原点,的方向分别为x,y,z轴的正方向,建立如图所示的空间直角坐标系不妨令,则,,因为,所以【小问2详解】由(1)可知,,,设平面的法向量,则令,得,设直线与平面所成的角,则.21、(1)在和上单调递增;在上单调递减(2)证明见解析【解析】(1)先求导,然后对导数化简整理后再解不等式即可得单调性;(2)要证明,通过求函数的极值可证明,要证,根据有两个不同的零点,将问题转化为证明成立,再通过换元从求函数的最值上证明.【小问1详解】因为,所以,令,得或.所以时,或;时,.所以在和上单调递增;在上单调递减.【小问2详解】因为,所以.当时,,可得在上单调递减,此时不可能存在两个不同的零

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论