2024届江苏省江阴市敔山湾实验学校八上数学期末质量检测模拟试题含解析_第1页
2024届江苏省江阴市敔山湾实验学校八上数学期末质量检测模拟试题含解析_第2页
2024届江苏省江阴市敔山湾实验学校八上数学期末质量检测模拟试题含解析_第3页
2024届江苏省江阴市敔山湾实验学校八上数学期末质量检测模拟试题含解析_第4页
2024届江苏省江阴市敔山湾实验学校八上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省江阴市敔山湾实验学校八上数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.一支蜡烛长厘米,点燃后每小时燃烧厘米,燃烧时剩下的高度(厘米)与燃烧时间(时)的函数关系的图象是()A. B.C. D.2.下列命题中为假命题的是()A.无限不循环小数是无理数 B.代数式的最小值是1C.若,则 D.有三个角和两条边分别相等的两个三角形一定全等3.如图,已知,则数轴上点所表示的数为()A. B. C. D.4.以下列各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm5.如图,已知:,点、、…在射线上,点、、…在射线上,,、…均为等边三角形,若,则的边长为()A.20 B.40 C. D.6.分式的值为0,则A.x=-2 B.x=±2 C.x=2 D.x=07.若点P(x,y)在第四象限,且,,则x+y等于:()A.-1 B.1 C.5 D.-58.若k<<k+1(k是整数),则k=()A.6 B.7 C.8 D.99.“高高兴兴上学,平平安安回家”,交通安全与我们每一位同学都息息相关,下列四个交通标志中,属于轴对称图形的是()A. B. C. D.10.如图,在中,是边上两点,且满足,,若,,则的度数为()A. B. C. D.11.如图,,,下列结论错误的是()A. B.C. D.12.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF二、填空题(每题4分,共24分)13.某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成如图所示的条形图,由此可估计该校2000名学生有______名学生是骑车上学的.14.某超市第一次用3000元购进某种干果销售,第二次又调拨9000元购进该种干果,但第二次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市先按每千克9元的价格出售,当大部分干果出售后,最后的600千克按原售价的7折售完,超市两次销售这种干果共盈利________元.15.如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为_____.16.若,,则_____________.17.若2x=3,4y=5,则2x﹣2y+1的值为_____.18.若关于的二次三项式是完全平方式,则的值为________________.三、解答题(共78分)19.(8分)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(1)根据图示填写下表;班级

平均数(分)

中位数(分)

众数(分)

九(1)

85

85

九(2)

80

(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.20.(8分)从边长为的正方形中剪掉一个边长为的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:(请选择正确的一个)A.B.C.(2)应用:利用你从(1)选出的等式,完成下列各题:①已知,,求的值;②计算:.21.(8分)某校开学初在家乐福超市购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍.已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)购买一个A品牌、一个B品牌足球各需多少元?(2)该校响应“足球进校园”的号召,决定再次购进A、B两种品牌的足球共50个,恰逢家乐福超市对这两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果该校此次购买的总费用不超过3260元,那么,最多可以购买多少个B品牌足球?22.(10分)如图,已知AB∥CD,∠A=100°,CB平分∠ACD,求∠ACD、∠ABC的度数.23.(10分)(1)如图1,AB∥CD,点E是在AB、CD之间,且在BD的左侧平面区域内一点,连结BE、DE.求证:∠E=∠ABE+∠CDE.(2)如图2,在(1)的条件下,作出∠EBD和∠EDB的平分线,两线交于点F,猜想∠F、∠ABE、∠CDE之间的关系,并证明你的猜想.(3)如图3,在(1)的条件下,作出∠EBD的平分线和△EDB的外角平分线,两线交于点G,猜想∠G、∠ABE、∠CDE之间的关系,并证明你的猜想.24.(10分)2019年11月26日,鲁南高铁日曲段正式开通,日照市民的出行更加便捷.从日照市到B市,高铁的行驶路线全程是600千米,普通列车的行驶路线全程是高铁的1.2倍.若高铁的平均速度是普通列车平均速度的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间节省4小时,求高铁的平均速度.25.(12分)从宁海县到某市,可乘坐普通列车或高铁,已知高铁的行驶路程与普通列车的行驶路程之和是920千米,而普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车的平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.26.如图,在ΔABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF交BC于D.如果EB=CF,求证:DE=DF.

参考答案一、选择题(每题4分,共48分)1、D【分析】随着时间的增多,蜡烛的高度就越来越小,由于时间和高度都为正值,所以函数图象只能在第一象限,由此即可求出答案.【题目详解】解:设蜡烛点燃后剩下h厘米时,燃烧了t小时,

则h与t的关系是为h=20-5t,是一次函数图象,即t越大,h越小,

符合此条件的只有D.

故选:D.【题目点拨】本题主要考查函数的图象的知识点,解答时应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.2、D【分析】根据无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理逐一分析即可.【题目详解】解:A.无限不循环小数是无理数,故本选项是真命题;B.代数式中根据二次根式有意义的条件可得解得:∵和的值都随x的增大而增大∴当x=2时,的值最小,最小值是1,故本选项是真命题;C.若,将不等式的两边同时乘a2,则,故本选项是真命题;D.有三个角和两条边分别相等的两个三角形不一定全等(两边必须是对应边),故本选项是假命题;故选D.【题目点拨】此题考查的是真假命题的判断,掌握无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理是解决此题的关键.3、D【分析】根据勾股定理求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【题目详解】由勾股定理得,∴∵点A表示的数是1∴点C表示的数是故选D.【题目点拨】本题考查了勾股定理、实数与数轴,熟记定理并求出AB的长是解题的关键.4、B【分析】运用三角形三边关系判定三条线段能否构成三角形时,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【题目详解】解:A.2cm,4cm,6cm可得,2+4=6,故不能组成三角形;

B.8cm,6cm,4cm可得,6+4>8,故能组成三角形;

C.14cm,6cm,7cm可得,6+7<14,故不能组成三角形;

D.2cm,3cm,6cm可得,2+3<6,故不能组成三角形;

故选B.【题目点拨】本题主要考查了三角形的三边关系的运用,三角形的两边差小于第三边,三角形两边之和大于第三边.5、C【分析】根据等边三角形的性质和,可求得,进而证得是等腰三角形,可求得的长,同理可得是等腰三角形,可得,同理得规律,即可求得结果.【题目详解】解:∵,是等边三角形,∴,∴,∴,则是等腰三角形,∴,∵,∴=1,,同理可得是等腰三角形,可得=2,同理得、,根据以上规律可得:,故选:C.【题目点拨】本题属于探索规律题,主要考查了等边三角形的性质、等腰三角形的判定与性质,掌握等边三角形的三个内角都是60°、等角对等边和探索规律并归纳公式是解题的关键.6、C【分析】根据分式的值为0,分子等于0,分母不等于0解答.【题目详解】根据分式的值为0的条件,要使,则有即解得.故选C.【题目点拨】本题考查分式的值为0,分子等于0,分母不等于0,熟记概念是关键.7、A【分析】先根据P点的坐标判断出x,y的符号,然后再根据|x|=2,|y|=1进而求出x,y的值,即可求得答案.【题目详解】∵|x|=2,|y|=1,∴x=2,y=1.∵P(x、y)在第四象限∴x=2,y=-1.∴x+y=2-1=-1,故选A.【题目点拨】本题主要考查了点在第四象限时点的坐标的符号及绝对值的性质,熟练掌握各个象限内点的坐标的符号特点是解答本题的关键.8、D【分析】找到90左右两边相邻的两个平方数,即可估算的值.【题目详解】本题考查二次根式的估值.∵,∴,∴.一题多解:可将各个选项依次代入进行验证.如下表:选项逐项分析正误A若×B若×C若×D若√【题目点拨】本题考查二次根式的估算,找到被开方数左右两边相邻的两个平方数是关键.9、D【分析】将一个图形一部分沿一条直线对折,能与另一部分完全重合,则这个图形叫轴对称图形,据此判断即可求解.【题目详解】解:根据轴对称图形的定义,只有D选项图形是轴对称图形.故选:D【题目点拨】本题考查了轴对称图形的概念,熟知轴对称图形定义是解题关键.10、A【分析】根据,得出∠BAE=∠BEA,∠CAD=∠CDA,再根据∠DAE=∠BAE+∠CAD-∠BAC算出∠DAE的度数.【题目详解】解:∵,,∴∠BAE=∠BEA,∠CAD=∠CDA,∵,,∴∠DAE=∠BAE+∠CAD-∠BAC,=+-(180°-α-β)=故选A.【题目点拨】本题考查了三角形内角和定理,等腰三角形的性质的应用,关键是推出∠DAE和∠BAE、∠CAD、∠BAC的关系,从而得到运算的方法.11、D【分析】根据全等三角形的判定及性质逐一判断即可.【题目详解】解:在△ABE和△ACD中∴△ABE≌△ACD,故A选项正确;∴∠B=∠C,故C选项正确;∵,∴AB-AD=AC-AE∴,故B选项正确;无法证明,故D选项错误.故选D.【题目点拨】此题考查的是全等三角形的判定及性质,掌握全等三角形的判定定理和性质定理是解决此题的关键.12、A【解题分析】平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt△ABC与Rt△DEF的形状和大小完全相同,即Rt△ABC≌Rt△DEF,再根据性质得到相应结论.【题目详解】解:∵Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF

∴Rt△ABC≌Rt△DEF

∴BC=EF,AC=DF

所以只有选项A是错误的,故选A.【题目点拨】本题涉及的是全等三角形的知识,解答本题的关键是应用平移的基本性质.二、填空题(每题4分,共24分)13、1【分析】根据条形统计图求出骑车上学的学生所占的百分比,再乘以总人数即可解答.【题目详解】解:根据题意得:2000×=1(名),答:该校2000名学生有1名学生是骑车上学的.故答案为:1.【题目点拨】本题考查了用样本估计总体和条形统计图,解题的关键是根据条形统计图求出骑车上学的学生所占的比例.14、2【分析】设第一次购进干果的单价为x元/千克,则第二次购进干果的单价为1.2x元/千克,根据数量=总价÷单价,结合第二次购进干果数量是第一次的2倍还多300千克,即可得出关于x的分式方程,解之即可得出x的值,进而即可求出第一、二次购进干果的数量,再利用利润=销售收入﹣成本即可得出结论.【题目详解】设第一次购进干果的单价为x元/千克,则第二次购进干果的单价为1.2x元/千克,根据题意得:2300,解得:x=5,经检验,x=5是原方程的解.当x=5时,600,1.1×9+600×9×0.7﹣3000﹣9000=2(元).故超市两次销售这种干果共盈利2元.故答案为:2.【题目点拨】本题考查了分式方程的应用,根据数量=总价÷单价,结合第二次购进干果数量是第一次的2倍还多300千克,列出关于x的分式方程是解答本题的关键.15、y=x+1或y=﹣3x﹣1.【分析】过C作CE⊥OB于E,则四边形CEOD是矩形,得到CE=OD,OE=CD,根据旋转的性质得到AB=BC,∠ABC=10°,根据全等三角形的性质得到BO=CE,BE=OA,求得OA=BE=3,设OD=a,得到CD=OE=|a﹣3|,根据面积公式列方程得到C(﹣6,1)或(6,3),设直线AB的解析式为y=kx+b,把A点和C点的坐标代入即可得到结论.【题目详解】解:过C作CE⊥OB于E,则四边形CEOD是矩形,∴CE=OD,OE=CD,∵将线段AB绕点B旋转10°至BC处,∴AB=BC,∠ABC=10°,∴∠ABO+∠CBO=∠CBO+∠BCE=10°,∴∠ABO=∠BCE,∵∠AOB=∠BEC=10°,∴△ABO≌△BCO(AAS),∴BO=CE,BE=OA,∵A(﹣3,0),∴OA=BE=3,设OD=a,∴CD=OE=|a﹣3|,∵四边形ABCD的面积为36,∴AO•OB+(CD+OB)•OD=×3×a+(a﹣3+a)×a=36,∴a=±6,∴C(﹣6,1)或(6,3),设直线AB的解析式为y=kx+b,把A点和C点的坐标代入得,或解得:或,∴直线AB的解析式为或y=﹣3x﹣1.故答案为或y=﹣3x﹣1.【题目点拨】本题考查了坐标与图形变化﹣旋转,待定系数法求函数的解析式,全等三角形的判定和性质,正确的作出图形是解题的关键.16、【分析】根据幂的乘方以及同底数幂的除法法则的逆运算解答即可.【题目详解】解:∵am=2,an=3,

∴a3m-2m=(am)3÷(an)2=23÷32=,故答案为:.【题目点拨】本题主要考查了幂的乘方以及同底数幂的除法法则的逆运算,熟记幂的运算法则是解答本题的关键.17、【分析】直接利用同底数幂的乘除运算法则将原式变形进而计算即可.【题目详解】解:∵2x=3,4y=22y=5,∴2x﹣2y+1=2x÷22y×2=3÷5×2=.故答案为:.【题目点拨】本题考查同底数幂的乘、除法法则,解题的关键是熟练理解:一个幂的指数是相加(或相减)的形式,那么可以分解为同底数幂相乘(或相除)的形式.18、9或-7【分析】根据完全平方公式:,观察其构造,即可得出m的值.【题目详解】解:当时,;当时,.故答案为:9或-7.【题目点拨】本题主要考查的是完全平方的公式,观察公式的构成是解题的关键.三、解答题(共78分)19、(6)填表见解析.(6)九(6)班成绩好些;(6)70,6.【解题分析】试题分析:(6)分别计算九(6)班的平均分和众数填入表格即可.(6)根据两个班的平均分相等,可以从中位数的角度去分析这两个班级的成绩;(6)分别将两组数据代入题目提供的方差公式进行计算即可.试题解析:(6)(70+600+600+76+80)=86分,众数为600分中位数为:86分;班级

平均数(分)

中位数(分)

众数(分)

九(6)

86

86

86

九(6)

86

80

600

(6)九(6)班成绩好些,因为两个班级的平均数相同,九(6)班的中位数高,所以在平均数相同的情况下中位数高的九(6)班成绩好些;(6)S66=[(76-86)6+(80-86)6+6×(86-86)6+(600-86)6]=70,S66=[(70-86)6+(600-86)6+(600-86)6+(76-86)6+(80-86)6]=6.考点:6.方差;6.条形统计图;6.算术平均数;6.中位数;6.众数.20、(1)A;(2)①3;②.【分析】(1)观察图1与图2,根据两图形阴影部分面积相等,验证平方差公式即可;

(2)①已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可;②先利用平方差公式变形,再约分即可得到结果.【题目详解】解:(1)根据图形得:a2-b2=(a+b)(a-b),

上述操作能验证的等式是A,

故答案为:A;(2)①∵,

∵,∴2x-3y=24÷4=3;②【题目点拨】此题考查了平方差公式的几何背景以及因式分解法的运用,熟练掌握平方差公式的结构特征是解本题的关键.21、(1)A品牌足球50元,B品牌足球80元;(2)31个.【解题分析】试题分析:(1)设一个A品牌的足球需x元,则一个B品牌的足球需x+30元,根据购买A品牌足球数量是购买B品牌足球数量的2倍列出方程解答即可;(2)设此次可购买a个B品牌足球,则购进A牌足球(50﹣a)个,根据购买A、B两种品牌足球的总费用不超过3260元,列出不等式解决问题.解:(1)设一个A品牌的足球需x元,则一个B品牌的足球需x+30元,由题意得=×2解得:x=50经检验x=50是原方程的解,x+30=80答:一个A品牌的足球需50元,则一个B品牌的足球需80元.(2)设此次可购买a个B品牌足球,则购进A牌足球(50﹣a)个,由题意得50×(1+8%)(50﹣a)+80×0.9a≤3260解得a≤31∵a是整数,∴a最大等于31,答:华昌中学此次最多可购买31个B品牌足球.考点:分式方程的应用;一元一次不等式的应用.22、80、40.【分析】根据AB∥CD求出∠ACD的度数,利用CB平分∠ACD得到∠1=∠2=40°,再根据AB∥CD,即可求出∠ABC的度数.【题目详解】∵AB∥CD,∠A=100°,∴∠ACD=180°﹣∠A=80°,∵CB平分∠ACD,∴∠1=∠2=∠ACD=40°,∵AB∥CD,∴∠ABC=∠2=40°.【题目点拨】此题考查平行线的性质、角平分线定理,熟记定理并熟练运用解题是关键.23、(1)见解析(2)见解析(3)2∠G=∠ABE+∠CDE【分析】(1)利用平行线的性质即可得出结论;(2)先判断出∠EBD+∠EDB=180°-(∠ABE+∠CDE),进而得出∠DBF+∠BDF=90°-(∠ABE+∠CDE),最后用三角形的内角和即可得出结论;(3)先由(1)知,∠BED=∠ABE+∠CDE,再利用角平分线的意义和三角形外角的性质即可得出结论.【题目详解】(1)如图,过点E作EH∥AB,∴∠BEH=∠ABE,∵EH∥AB,CD∥AB,∴EH∥CD,∴∠DEH=∠CDE,∴∠BED=∠BEH+∠DEH=∠ABE+∠CDE;(2)2∠F-(∠ABE+∠CDE)=180°,理由:由(1)知,∠BED=∠ABE+∠CDE,∵∠EDB+∠EBD+∠BED=180°,∴∠EBD+∠EDB=180°-∠BED=180°-(∠ABE+∠CDE),∵BF,DF分别是∠DBE,∠BDE的平分线,∴∠EBD=2∠DBF,∠EDB=2∠BDF,∴2∠DBF+2∠BDF=180°-(∠ABE+∠CDE),∴∠DBF+∠BDF=90°-(∠ABE+∠CDE),在△BDF中,∠F=180°-(∠DBF+∠BDF)=180°-[90°-(∠ABE+∠CDE)]=90°+(∠ABE+∠CDE),即:2∠F-(∠ABE+∠CDE)=180°;(3)2∠G=∠ABE+∠CDE,理由:如图3,由(1)知,∠BED=∠ABE+∠CDE,∵BG是∠EBD的平分线,∴∠DBE=2∠DBG,∵DG是∠EDP的平分线,∴∠EDP=2∠GDP,∴∠BED=∠EDP-∠DBE=2∠GDP-2∠DBG=2(∠GDP-∠DBG),∴∠GDP-∠DBG=∠BED=(∠ABE+∠CDE)∴∠G=∠GDP-∠DBG=(∠ABE+∠CDE),∴2∠G=∠ABE+∠CDE.【题目点拨】此题主要考查了平行线的性质,三角形的内角和定理,三角形的外角的性质,判断出∠BED=∠EDP-∠DBE是解本题的关键.24、高铁的平均速度是300千米/时.【分析】根据高铁的行驶路程是600千米和普通列车的行驶路程是高铁的行驶路程的1.2倍,两数相乘即可得出普通列车的行驶路程;设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短4小时,列出分式方程,然后求解即可【题目详解】解:根据题意得:

600×1.2=720(千米).

所以,普通列车的行驶路程是720千米

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论