江西省上饶市名校2024届八上数学期末教学质量检测模拟试题含解析_第1页
江西省上饶市名校2024届八上数学期末教学质量检测模拟试题含解析_第2页
江西省上饶市名校2024届八上数学期末教学质量检测模拟试题含解析_第3页
江西省上饶市名校2024届八上数学期末教学质量检测模拟试题含解析_第4页
江西省上饶市名校2024届八上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省上饶市名校2024届八上数学期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列各数中是无理数的是()A.3 B. C. D.2.下列命题中,是假命题的是()A.对顶角相等 B.同位角相等C.同角的余角相等 D.全等三角形的面积相等3.甲、乙、丙、丁四人进行100短跑训练,统计近期10次测试的平均成绩都是13.2,10次测试成绩的方差如下表,则这四人中发挥最稳定的是()选手甲乙丙丁方差0.200.190.210.22A.甲 B.乙 C.丙 D.丁4.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是()A.32° B.64° C.65° D.70°5.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.= B.=C.= D.=6.500米口径球面射电望远镜,简称,是世界上最大的单口径球面射电望远镜,被誉为“中国天眼”.望远镜首次发现的毫秒脉冲星得到国际认证,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为()A. B. C. D.7.如图,已知Rt△ABC中,∠ACB=90°,CD是高,∠A=30°,BD=2cm,则AB的长是()A.4 B.6 C.8 D.108.在下列各原命题中,其逆命题为假命题的是()A.直角三角形的两个锐角互余B.直角三角形两条直角边的平方和等于斜边的平方C.等腰三角形两个底角相等D.同角的余角相等9.关于x的不等式有解,则a的取值范围是()A.a<3 B.a≤3 C.a≥3 D.a>310.一个多边形的每个内角都是108°,那么这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形二、填空题(每小题3分,共24分)11.在函数y=2x+1中,自变量12.△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________.13.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=50°,则∠BDA=________.14.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩余尺,将绳子对折再量长木,长木还到余尺,问木长多少尺?”设绳长尺,木长尺.可列方程组为__________.15.我国南宋数学家杨辉用如图的三角形解释二项和的乘方规律,我们称这个三角形为“杨辉三角”,观察左边展开的系数与右边杨辉三角对应的数,则展开后最大的系数为_____16.如图,矩形ABCD中,AB=5,BC=12,对角线AC,BD交于点O,E,F分别为AB,AO中点,则线段EF=_________.17.若关于x的方程无解,则m的值是____.18.已知三角形的三边长均为整数,其中两边长分别为1和3,则第三边长为_______.三、解答题(共66分)19.(10分)甲、乙两人参加从A地到B地的长跑比赛,两人在比赛时所跑的路程y(米)与时间x(分钟)之间的函数关系如图所示,请你根据图象,回答下列问题:(1)先到达终点(填“甲”或“乙”);甲的速度是米/分钟;(2)甲与乙何时相遇?(3)在甲、乙相遇之前,何时甲与乙相距250米?20.(6分)如图,BF,CG分别是的高线,点D,E分别是BC,GF的中点,连结DF,DG,DE,(1)求证:是等腰三角形.(2)若,求DE的长.21.(6分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.22.(8分)阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解析:由分母为,可设则对应任意x,上述等式均成立,,,..这样,分式被拆分成了一个整式与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.(2)当时,直接写出________,的最小值为________.23.(8分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图(1)中,画一个三角形,使它的三边长都是有理数;(2)在图(2)中,画一个直角三角形,使它们的三边长都是无理数;(3)在图(3)中,画一个正方形,使它的面积是10.24.(8分)(1)如图1,在△ABC中,∠ABC的平分线BF交AC于F,过点F作DF∥BC,求证:BD=DF.(2)如图2,在△ABC中,∠ABC的平分线BF与∠ACB的平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?并证明这种关系.(3)如图3,在△ABC中,∠ABC的平分线BF与∠ACB的外角平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?请写出你的猜想.(不需证明)25.(10分)已知:如图,9×9的网格中(每个小正方形的边长为1)有一个格点△ABC.(1)利用网格线,画∠CAB的角平分线AQ,交BC于点Q,画BC的垂直平分线,交射线AQ于点D;(2)连接CD、BD,则∠CDB=°.26.(10分)某公司为增加员工收入,提高效益,今年提出如下目标,和去年相比,在产品的出厂价增加的前提下,将产品成本降低20%,使产品的利润率()较去年翻一番,求今年该公司产品的利润率.

参考答案一、选择题(每小题3分,共30分)1、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【题目详解】A、3是整数,是有理数,故选项错误;

B、是无理数,选项正确.

C、=2是整数,是有理数,选项错误;D、是分数,是有理数,故选项错误;

故选B.【题目点拨】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2、B【分析】根据对顶角得性质、平行线得性质、余角得等于及全等三角形得性质逐一判断即可得答案.【题目详解】A.对顶角相等是真命题,故该选项不合题意,B.两直线平行,同位角相等,故该选项是假命题,符合题意,C.同角的余角相等是真命题,故该选项不合题意,D.全等三角形的面积相等是真命题,故该选项不合题意.故选:B.【题目点拨】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3、B【分析】根据方差的定义判断,方差越小数据越稳定.【题目详解】∵,∴这四人中乙的方差最小,

∴这四人中发挥最稳定的是乙,

故选:B.【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、B【解题分析】此题涉及的知识点是三角形的翻折问题,根据翻折后的图形相等关系,利用三角形全等的性质得到角的关系,然后利用等量代换思想就可以得到答案【题目详解】如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置∠B=∠D=32°∠BEH=∠DEH∠1=180-∠BEH-∠DEH=180-2∠DEH∠2=180-∠D-∠DEH-∠EHF=180-∠B-∠DEH-(∠B+∠BEH)=180-∠B-∠DEH-(∠B+∠DEH)=180-32°-∠DEH-32°-∠DEH=180-64°-2∠DEH∠1-∠2=180-2∠DEH-(180-64°-2∠DEH)=180-2∠DEH-180+64°+2∠DEH=64°故选B【题目点拨】此题重点考察学生对图形翻折问题的实际应用能力,等量代换是解本题的关键5、A【解题分析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.6、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.00519=5.19×10-1.

故选:B.【题目点拨】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、C【解题分析】试题解析:∵∠ACB=90°,∠A=30°,∴∠B=60°,又CD是高,∴∠BCD=30°,∴BC=2BD=4cm,∵∠A=30°,∴AB=2BC=8cm,故选C.8、D【分析】首先写出各个命题的逆命题,然后进行判断即可.【题目详解】A、逆命题是:两个锐角互余的三角形是直角三角形,是真命题,故此选项不符合题意;B、逆命题是:如果一个三角形有两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形,是真命题,故此选项不符合题意;C、逆命题是:有两个角相等的三角形是等腰三角形,是真命题,故此选项不符合题意;D、逆命题是:如果两个角相等,那么它们是同一个角的余角,是假命题,故此选项符合题意.故选:D.【题目点拨】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.9、C【分析】解不等式6-2x≤0,再根据不等式组有解求出a的取值范围即可.【题目详解】解不等式6-2x≤0,得:x≥1,∵不等式组有解,∴a≥1.故选:C.【题目点拨】本题主要考查根据不等式组的解判断未知参数的范围,熟练掌握不等式组的解法是解题关键.10、A【分析】根据题意,计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【题目详解】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A.【题目点拨】本题考查了多边形外角和是360°这一知识点,根据题意求出,每个外角的度数是解决本题的关键。二、填空题(每小题3分,共24分)11、x【题目详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数可知,要使2x+112、84或24【解题分析】分两种情况考虑:①当△ABC为锐角三角形时,如图1所示,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD+DC=9+5=14,则S△ABC=BC⋅AD=84;②当△ABC为钝角三角形时,如图2所示,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD−DC=9−5=4,则S△ABC=BC⋅AD=24.综上,△ABC的面积为24或84.故答案为24或84.点睛:此题考查了勾股定理,利用了分类讨论的数学思想,灵活运用勾股定理是解本题的关键.13、25º【分析】由平行四边形的性质和折叠的性质可得AD∥BC,∠BDA=∠BDG,即可求解.【题目详解】∵将平行四边形ABCD沿对角线BD折叠,∴AD∥BC,∠BDA=∠BDG,∴∠1=∠ADG=50°,且∠ADG=∠BDA+∠BDG,∴∠BDA=25°,故答案为:25°.【题目点拨】本题考查了翻折变换,折叠的性质,平行四边形的性质,灵活运用折叠的性质是本题的关键.14、【解题分析】本题的等量关系是:绳长-木长=4.5;木长-绳长=1,据此可列方程组求解.【题目详解】设绳长x尺,长木为y尺,依题意得,故答案为:.【题目点拨】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程.15、15【解题分析】根据题意已知的式子找到展开后最大的系数规律即可求解.【题目详解】∵展开后最大的系数为1=0+1;展开后最大的系数为2=1+1;展开后最大的系数为3=1+2;展开后最大的系数为6=1+2+3;∴展开后最大的系数为1+2+3+4=10;展开后最大的系数为1+2+3+4+5=15;故答案为:15.【题目点拨】此题主要考查多项式的规律探索,解题的关键是根据已知的式子找到规律求解.16、3.1.【题目详解】解:因为∠ABC=90°,AB=5,BC=12,所以AC=13,因为AC=BD,所以BD=13,因为E,F分别为AB,AO中点,所以EF=BO,而BO=BD,所以EF=××13=3.1,故答案为3.1.17、3【分析】先去分母求出x的解,由增根x=4即可求出m的值.【题目详解】解方程m+1-x=0,解得x=m+1,∵增根x=4,即m+1=4∴m=3.【题目点拨】此题主要考查分式方程的增根,解题的关键是熟知解分式方程的方法.18、3【分析】首先求出第三边长的取值范围,选取整数即可.【题目详解】∵三角形的两边长分别为1和3,∴设第三边长为x,则第三边长的取值范围为2<x<4,且三边长均为整肃,∴第三边长为3.【题目点拨】本题考查了三角形第三边的取值范围,掌握三角形三边关系是解题的关键.三、解答题(共66分)19、(1)乙;1米/分钟;(2)12分钟时相遇;(3)2分钟时【分析】(1)依据函数图象可得到两人跑完全程所用的时间,从而可知道谁先到达终点,依据速度=路程÷时间可求得甲的速度;(2)先求得甲的路程与时间的函数关系式,然后求得10<x<16时,乙的路程与时间的函数关系式,最后,再求得两个函数图象交点坐标即可;(3)根据题意列方程解答即可.【题目详解】解:(1)由函数图象可知甲跑完全程需要20分钟,乙跑完全程需要16分钟,所以乙先到达终点;甲的速度==1米/分钟.故答案为:乙;1.(2)设甲跑的路程y(米)与时间x(分钟)之间的函数关系式为y=kx,根据图象,可得y=x=1x,设10分钟后(即10<x<16),乙跑的路程y(米)与时间x(分钟)之间的函数关系式为:y=kx+b.根据图象,可得,解得,所以10分钟后乙跑的路程y(米)与时间x(分钟)之间的函数关系式,联立甲乙两人的函数关系式解得,答:甲与乙在12分钟时相遇;(3)设此时起跑了x分钟,根据题意得,解得x=2.答:在甲、乙相遇之前,2分钟时甲与乙相距1米.【题目点拨】本题考查的是一次函数的实际应用中的行程问题,解决此类问题,需要结合解析式、图象与问题描述的实际情况,充分理解题意,熟练进行运算才比较简便.20、(1)证明见详解;(2)4.【分析】(1)由BF,CG分别是的高线,点D是BC的中点,可得:DG=BC,DF=BC,进而得到结论;(2)由是等腰三角形,点E是FG的中点,可得DE垂直平分FG,然后利用勾股定理,即可求解.【题目详解】(1)∵BF,CG分别是的高线,∴CG⊥AB,BF⊥AC,∴△BCG和△BCF是直角三角形,∵点D是BC的中点,∴DG=BC,DF=BC,∴DG=DF,∴是等腰三角形;(2)∵BC=10,∴DF=BC=×10=5,∵是等腰三角形,点E是GF的中点,∴DE⊥GF,EF=GF=×6=3,∴.【题目点拨】本题主要考查直角三角形的性质“直角三角形斜边上的中线等于斜边的一半”,勾股定理以及等腰三角形的判定和性质,结合图形,找出图形中的等腰三角形和直角三角形,是解题的关键.21、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【分析】(1)根据已知条件易证∠BAC=∠DAE,再由AB=AD,AE=AC,根据SAS即可证得△ABC≌△ADE;(2)已知∠CAE=90°,AC=AE,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC≌△DAE,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE即可得∠FAE的度数;(3)延长BF到G,使得FG=FB,易证△AFB≌△AFG,根据全等三角形的性质可得AB=AG,∠ABF=∠G,再由△BAC≌△DAE,可得AB=AD,∠CBA=∠EDA,CB=ED,所以AG=AD,∠ABF=∠CDA,即可得∠G=∠CDA,利用AAS证得△CGA≌△CDA,由全等三角形的性质可得CG=CD,所以CG=CB+BF+FG=CB+2BF=DE+2BF.【题目详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,在△CGA和△CDA中,,∴△CGA≌△CDA,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【题目点拨】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.22、(1)分式被拆分成了一个整式与一个分式的和;(2)0;1.【分析】(1)参照例题材料,设,然后求出m、n的值,从而即可得出答案;(2)先根据得出,再根据不等式的运算即可得.【题目详解】(1)由分母为,可设对应任意x,上述等式均成立,解得这样,分式被拆分成了一个整式与一个分式的和;(2)由(1)得当时,,且当时,等号成立则当时,取得最小值,最小值为1故答案为:0;1.【题目点拨】本题考查了分式的拆分运算、平方数的非负性、不等式的运算等知识点,读懂材料,掌握分式的运算法则是解题关键.23、详见解析.【分析】(1)画一个边长3,4,5的三角形即可;(2)利用勾股定理,找长为无理数的线段,画三角形即可;(3)画边长为的正方形即可.【题目详解】三边分别为3,4,5(如图);(2)(3)画一个边长为的正方形.【题目点拨】考查了格点三角形的画法.本题需仔细分析题意,结合图形,利用勾股定理和正方形的性质即可解决问题.24、(1)见详解;(2)BD+CE=DE,证明过程见详解;(3)BD﹣CE=DE,证明过程见详解【分析】(1)根据平行线的性质和角平分线定义得出∠DFB=∠CBF,∠ABF=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论