2024届甘肃省白银市平川区数学八上期末经典模拟试题含解析_第1页
2024届甘肃省白银市平川区数学八上期末经典模拟试题含解析_第2页
2024届甘肃省白银市平川区数学八上期末经典模拟试题含解析_第3页
2024届甘肃省白银市平川区数学八上期末经典模拟试题含解析_第4页
2024届甘肃省白银市平川区数学八上期末经典模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省白银市平川区数学八上期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列图标中轴对称图形的个数是()A.1个 B.2个 C.3个 D.4个2.下列实数中的无理数是()A.﹣ B.π C.1.57 D.3.如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,2) B.(﹣9,6) C.(﹣1,6) D.(﹣9,2)4.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN(

)A.∠M=∠N B.AB=CD C.AM∥CN D.AM=CN5.下列说法正确的是()A.带根号的数都是无理数B.数轴上的每一个点都表示一个有理数C.一个正数只有一个平方根D.实数的绝对值都不小于零6.用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A.假定CD∥EF B.假定CD不平行于EFC.已知AB∥EF D.假定AB不平行于EF7.下面的计算中,正确的是()A. B. C. D.8.下列各式由左边到右边的变形中,是分解因式的为()A. B.C. D.9.如图,一副三角板叠在一起,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,AC与DE交于点M,如果,则的度数为()A.80 B.85 C.90 D.9510.如图是一段台阶的截面示意图,若要沿铺上地毯(每个调节的宽度和高度均不同),已知图中所有拐角均为直角.须知地毯的长度,至少需要测量()A.2次 B.3次 C.4次 D.6次11.在显微镜下测得“新冠”病毒的直径为0.00000000205米,用科学记数法表示为()A.0.205×10﹣8米 B.2.05×109米C.20.5×10﹣10米 D.2.05×10﹣9米12.已知多边形的每一个外角都是72°,则该多边形的内角和是()A.700° B.720° C.540° D.1080°二、填空题(每题4分,共24分)13.随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.0000034m,用科学记数法表示是_______。14.下列关于x的方程①,②,③1,④中,是分式方程的是(________)(填序号)15.若,则等于______.16.若分式的值为0,则的值是_____.17.如图所示的坐标系中,单位长度为1,点B的坐标为(1,3),四边形ABCD的各个顶点都在格点上,点P也在格点上,的面积与四边形ABCD的面积相等,写出所有点P的坐标_____________.(不超出格子的范围)18.如图,中,,,为线段上一动点(不与点,重合),连接,作,交线段于.以下四个结论:①;②当为中点时;③当时;④当为等腰三角形时.其中正确的结论是_________(把你认为正确结论的序号都填上)三、解答题(共78分)19.(8分)如图1,的边在直线上,,且的边也在直线上,边与边重合,且.(1)直接写出与所满足的数量关系:_________,与的位置关系:_______;(2)将沿直线向右平移到图2的位置时,交于点Q,连接,求证:;(3)将沿直线向右平移到图3的位置时,的延长线交的延长线于点Q,连接,试探究与的数量和位置关系?并说明理由.20.(8分)如图,△ABC中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).21.(8分)如图是由36个边长为1的小正方形拼成的网格图,请按照要求画图:(1)在图①中画出2个以AB为腰且底边不等的等腰△ABC,要求顶点C是格点;(2)在图②中画出1个以AB为底边的等腰△ABC,要求顶点C是格点.22.(10分)已知一次函数的解析式为,求出关于轴对称的函数解析式.23.(10分)已知港口A与灯塔C之间相距20海里,一艘轮船从港口A出发,沿AB方向以每小时4海里的速度航行,4小时到达D处,测得CD两处相距12海里,若轮船沿原方向按原速度继续航行2小时到达小岛B处,此时船与灯塔之间的距离为多少海里?24.(10分)若式子无意义,求代数式(y+x)(y-x)+x2的值.25.(12分)(1)如图(1)在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE;(2)如图(2)将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请给出证明;若不成立,请说明理由.26.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)mm-3月处理污水量(吨/台)220180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过156万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】①、②、③是轴对称图形,④是中心对称图形.故选C.点睛:本题考查了轴对称图形和中心对称图形的识别.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形。一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.2、B【分析】无限不循环小数是无理数,根据定义判断即可.【题目详解】解:A.﹣是分数,属于有理数;B.π是无理数;C.1.57是有限小数,即分数,属于有理数;D.是分数,属于有理数;故选:B.【题目点拨】此题考查无理数的定义,熟记定义并运用解题是关键.3、A【分析】根据平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减即可解决问题;【题目详解】由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选A.【题目点拨】本题考查坐标与平移,解题的关键是记住平移规律:坐标,右移加,左移减;纵坐标,上移加,属于中考常考题型.4、D【分析】A、在△ABM和△CDN中由ASA条件可证△ABM≌△CDN,则A正确,B、在△ABM和△CDN中由SAS可证△ABM≌△CDN则B正确,C、AM∥CN,得∠A=∠C,在△ABM和△CDN中AAS△ABM≌△CDN,则C正确,D、只有在直角三角形中边边角才成立,则D不正确.【题目详解】A、在△ABM和△CDN中,∠M=∠N,MB=ND,∠MBA=∠NDC,△ABM≌△CDN(ASA),则A正确;B、在△ABM和△CDN中,MB=ND,∠MBA=∠NDC,AB=CD,△ABM≌△CDN(SAS),则B正确;C、AM∥CN,得∠A=∠C,在△ABM和△CDN中,∠A=∠C,∠MBA=∠NDC,MB=ND,△ABM≌△CDN(AAS),则C正确;D、AM=CN,MB=ND,∠MBA=∠NDC≠90º,则D不正确.故选择:D.【题目点拨】本题考查在一边与一角的条件下,添加条件问题,关键是掌握三角形全等的判定方法,结合已知与添加的条件是否符合判定定理.5、D【分析】根据无理数的定义、数轴与有理数的关系、平方根的性质、绝对值的性质逐一判断即可【题目详解】A.带根号的数不一定是无理数,故此选项错误;B.数轴上的每一个点都表示一个实数,故此选项错误;C.一个正数有2个平方根,故此选项错误;D.实数的绝对值都不小于零,正确.故选:D.【题目点拨】本题考查了无理数的定义、数轴与有理数的关系、平方根的性质、绝对值的性质,熟练掌握相关的知识是解题的关键6、B【解题分析】根据要证CD∥EF,直接假设CD不平行于EF即可得出.【题目详解】解:∵用反证法证明命题:如果AB∥CD,AB∥EF,那么CD∥EF.∴证明的第一步应是:从结论反面出发,假设CD不平行于EF.故选B.点评:此题主要考查了反证法的第一步,根据题意得出命题结论的反例是解决问题的关键.7、B【分析】直接利用积的乘方运算法则、幂的乘方法则以及同底数幂的乘法运算法则分别计算得出答案.【题目详解】解:A、b4•b4=b8,故此选项错误;

B、x3•x3=x6,正确;

C、(a4)3•a2=a14,故此选项错误;

D、(ab3)2=a2b6,故此选项错误;

故选:B.【题目点拨】此题主要考查了积的乘方运算、幂的乘方和同底数幂的乘法运算,正确掌握相关运算法则是解题关键.8、D【分析】根据分解因式的概念:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),逐一判定即可.【题目详解】A选项,不符合题意;B选项,不能确定是否为0,不符合题意;C选项,不符合题意;D选项,是分解因式,符合题意;故选:D.【题目点拨】此题主要考查对分解因式的理解,熟练掌握,即可解题.9、C【分析】先根据平角的概念求出的度数,然后利用三角形内角和定理即可得出答案.【题目详解】故选:C.【题目点拨】本题主要考查三角形内角和定理及平角的概念,掌握三角形内角和定理是解题的关键.10、A【分析】根据平移的特点即可到达只需测量AH,HG即可得到地毯的长度.【题目详解】∵图中所有拐角均为直角∴地毯的长度AB+BC+CD+DE+EF+FG=AH+HG,故只需要测量2次,故选A.【题目点拨】本题主要运用平移的特征,把台阶的长平移成长方形的长,把台阶的高平移成长方形的宽,然后进行求解.11、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.00000000205米,该数据用科学记数法表示为2.05×10-9米.

故选:D.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12、C【分析】由题意可知外角和是360°,除以一个外角度数即为多边形的边数,再根据多边形的内角和公式可求得该多边形的内角和.【题目详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:5,∴该多边形的内角和为:(5﹣2)×180°=540°.故选:C.【题目点拨】本题考查多边形的内外角和,用到的知识点为:多边形的边数与外角的个数的关系;n边形的内角和公式为(n-2)×180°.二、填空题(每题4分,共24分)13、3.4×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.0000034m=3.4×10-6,

故答案为:3.4×10-6【题目点拨】此题考查科学记数法,解题关键在于掌握一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、②【解题分析】分式方程分式方程是方程中的一种,且分母里含有未知数的(有理)方程叫做分式方程,等号两边至少有一个分母含有未知数。【题目详解】根据分式方程的定义即可判断.符合分式方程的定义的是②.【题目点拨】本题考查的是分式方程的定义,解题的关键是掌握分式方程的定义.15、1【分析】根据幂的乘方,将的底数化为2,然后根据同底数幂乘方的逆用和幂的乘方的逆用计算即可.【题目详解】解:====将代入,得原式=故答案为:1.【题目点拨】此题考查的是幂的运算性质,掌握同底数幂乘方的逆用和幂的乘方及逆用是解决此题的关键.16、1【解题分析】分式值为零的条件:分子等于零且分母不等于零,由此列出不等式和等式,求解即可.【题目详解】∵分式的值为0,∴,∴x=1.故答案是:1.【题目点拨】考查了分式的值为零的条件,解题关键是:分式值为零的条件是分子等于零且分母不等于零.17、(0,4),(1,2),(2,0),(4,4)【分析】算出四边形ABCD的面积等于△ABC面积与△ACD面积之和即为2,同时矩形AEDC面积也为2,且E为AP1的中点,由中线平分所在三角形面积即为所求.【题目详解】解:∵,又,∴,又E为AP1的中点,∴DE平分△ADP1的面积,且△AED面积为1,∴△ADP1面积为2,故P1点即为所求,且P1(4,4),同理C为DP3的中点,AC平分△ADP3面积,且△ACD面积为1,故△ADP3面积为2,故P3点即为所求,且P3(1,2),由两平行线之间同底的三角形面积相等可知,过P3作AD的平行线与网格的交点P2和P4也为所求,故P2(0,4),P4(2,0),故答案为:P(0,4),(1,2),(2,0),(4,4).【题目点拨】考查了三角形的面积,坐标与图形性质,关键是熟练掌握中线平分所在三角形的面积,两平行线之间同底的三角形面积相等这些知识点.18、①②③【分析】利用三角形外角的性质可判断①;利用等腰三角形三线合一的性质得到∠ADC=90,求得∠EDC=50,可判断②;利用三角形内角和定理求得∠DAC=70=∠DEA,证得DA=DE,可证得,可判断③;当为等腰三角形可分类讨论,可判断④.【题目详解】①∠ADC是的一个外角,∴∠ADC=∠B+∠BAD=40+∠BAD,又∠ADC=40+∠CDE,∴∠CDE=∠BAD,故①正确;②∵,为中点,∴,AD⊥BC,∴∠ADC=90,∴∠EDC=90,∴,∴DE⊥AC,故②正确;③当时由①得∠CDE=∠BAD,在中,∠DAC=,在中,∠AED=,∴DA=ED,在和中,,∴,∴,故③正确;④当AD=AE时,∠AED=∠ADE=40°,

∴∠AED=∠C=40°,则DE∥BC,不符合题意舍去;当AD=ED时,∠DAE=∠DEA,同③,;当AE=DE时,∠DAE=∠ADE=40°,

∴∠BAD,

∴当△ADE是等腰三角形时,

∴∠BAD的度数为30°或60°,故④错误;综上,①②③正确,故答案为:①②③【题目点拨】此题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质,三角形的内角和公式,掌握全等三角形的判定定理和性质定理、灵活运用分类讨论思想是解题的关键.三、解答题(共78分)19、(1)AB=AP

,AB⊥AP

;(2)证明见解析;(3)AP=BQ,AP⊥BQ,证明见解析.【分析】(1)根据等腰直角三角形的性质可得∠BAP=45°+45°=90°,根据垂直平分线的性质可得AB=AP;(2)要证BQ=AP,可以转化为证明Rt△BCQ≌Rt△ACP;(3)类比(2)的证明就可以得到,证明垂直时,延长QB交AP于点N,则∠PBN=∠CBQ,借助全等得到的角相等,得出∠APC+∠PBN=90°,进一步可得出结论..【题目详解】解:(1)∵AC⊥BC且AC=BC,

∴△ABC为等腰直角三角形,∠ACB=90°,

∴∠BAC=∠ABC=(180°-∠ACB)=45°,

∵,∠EFP=180°-∠ACB=90°,∴△EFP为等腰直角三角形,BC=AC=CP,∴∠PEF=45°,AB=AP,

∴∠BAP=45°+45°=90°,

∴AB=AP且AB⊥AP;

故答案为:AB=AP

,AB⊥AP

(2)证明:

∵EF=FP,EF⊥FP

∴∠EPF=45°.

∵AC⊥BC,

∴∠CQP=∠EPF=45°

∴CQ=CP

Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP

(SAS).

∴AP=BQ.

(3)AP=BQ,AP⊥BQ,理由如下:

∵EF=FP,EF⊥FP,

∴∠EPF=45°.

∴∠CPQ=∠EPF=45°

∵AC⊥BC

∴CQ=CP

Rt△BCQ和Rt△ACP中,

∴Rt△BCQ≌Rt△ACP

(SAS).

∴AP=BQ,∠BQC=∠APC,如图,延长QB交AP于点N,

则∠PBN=∠CBQ,在Rt△BCQ中,∠BQC+∠CBQ=90°,

∴∠APC+∠PBN=90°,

∴∠PNB=90°,

∴QB⊥AP.【题目点拨】本题是几何变换综合题,主要考查了等腰直角三角形的性质,垂直平分线的性质,全等三角形的判定和性质.能结合题意找到全等的三角形,并正确证明是解题关键.20、(1)过程见解析;(2)MN=NC﹣BM.【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN=60°,∠BDC=120°,可证∠MDN=∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC.

(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.【题目详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°,∴∠DBC=∠DCB=30°∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,在△MBD与△ECD中,∵,∴△MBD≌△ECD(SAS),∴MD=DE,∠BDM=∠CDE∵∠MDN=60°,∠BDC=120°,∴∠CDE+∠NDC=∠BDM+∠NDC=120°-60°=60°,即:∠MDN=∠NDE=60°,在△DMN与△DEN中,∵,∴△DMN≌△DEN(SAS),∴MN=NE=CE+NC=BM+NC.(2)如图②中,结论:MN=NC﹣BM.理由:在CA上截取CE=BM.∵△ABC是正三角形,∴∠ACB=∠ABC=60°,又∵BD=CD,∠BDC=120°,∴∠BCD=∠CBD=30°,∴∠MBD=∠DCE=90°,在△BMD和△CED中∵,∴△BMD≌△CED(SAS),∴DM=DE,∠BDM=∠CDE∵∠MDN=60°,∠BDC=120°,∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°,即:∠MDN=∠NDE=60°,在△MDN和△EDN中∵,∴△MDN≌△EDN(SAS),∴MN=NE=NC﹣CE=NC﹣BM.【题目点拨】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.21、(1)答案见解析;(2)答案见解析.【分析】(1)以A或者B为原点,再作与线段AB相等的线段与格点相交于C,连接ABC三点即可(2)作线段AB的中线,中线与格点相交于C,连接ABC三点即可【题目详解】解:(1)此为所有存在的答案,取其中2个即可(2)此为所有存在的答案,取其中1个即可【题目点拨】本题考察了几何画图的能力,掌握等腰三角形的性质,按题意作图即可22、y=-2x-1【分析】求出与x轴、y轴的交点坐标,得到关于y轴对称点的坐标,即可求出过此两点的函数解析式.【题目详解】令中y=0,得x=;x=0,得y=-1,∴与x轴交点为(,0),与y轴交点为(0,-1),设关于y轴对称的函数解析式为y=kx+b,过点(-,0)、(0,-1),∴,解得,∴关于轴对称的函数解析式为y=-2x-1.【题目点拨】此题考查待定系数法求函数解析式,题中求出原函数解析式与坐标轴的交点,得到关于y轴对称点的坐标是解题的关键.23、船与灯塔之间的距离为海里.【分析】先要利用勾股定理的逆定理证明出△ADC是Rt△,再推出△BDC是Rt△,最后利用勾股定理算出BC.【题目详解】在Rt△ACD中,AC=20,CD=12,∴AD=4×4=16,AC2=AD2+CD2,∴△ACD是直角三角形.∴△BDC是直角三角形,在Rt△CDB中,CD=12,DB=8,∴CB=.答:船与灯塔之间的距离为海里.【题目点拨】此题主要考查了勾股定理的应用,根据已知得出△CDB为直角三角形以及在直角三角形中求出CD的长是解题关键.24、【分析】根据式子无意义可确定y的值,再化简代数式,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论