




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3
探索三角形全等的条件(第2课时)第四章三角形北师版七年级下册
回首往事:判断三角形全等至少要有几个条件?答:至少要有三个条件小结:如果给出一个三角形的三条边的长度,那么由此得到的三角形是全等的。ABCDEF∵AB=DE,AC=DF,BC=EF∴ΔABC≌ΔDEF(SSS)判定公理1:三边对应相等的两个三角形全等,简写成“边边边”或“SSS复习旧知展望未来:问题1:如果已知一个三角形的两角及一边,那么有几种可能的情况呢?答:角边角(ASA)角角边(AAS)问题2:做一做:按要求画出三角形,并与同伴交流。已知:∠A=600、∠B=450、AB=3cmABC6004503cm小结:判定公理2:两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”剪下来,与同伴进行比较,它们能否互相重合?做一做讲授新课(已知两角和其中一角的对边)已知三角形的两个内角分别为和,一条边长为3cm,(1)如果角所对的边为3cm,你能画出这个三角形吗?(2)如果角所对的边为3cm,你能画出这个三角形吗?做一做3cm两角和其中一角的对边对应相等的两个三角形全等.简写成“角角边”或“AAS”.(这里的条件与1中的条件有什么相同点和不同点?能转化成1条件吗)三角形全等的判定公理2:∵∠B=∠E,BC=EF,∠C=∠F∴ΔABC≌DEF(ASA)三角形全等的判定公理3:∵∠B=∠E,∠C=∠F,AC=DF∴ΔABC≌DEF(AAS)ABCDEFABCDEF1、如图,已知AB=DE,∠A=∠D,,∠B=∠E,则△ABC≌△DEF的理由是:2、如图,已知AB=DE,∠A=∠D,,∠C=∠F,则△ABC≌△DEF的理由是:ABCDEF角边角(ASA)角角边(AAS)3.如图,AC与BD相交于点O,∠A=∠C,且AO=CO,求证AD=BC.1.如图,AC,BD相交于点E,BE=DE,AB∥CD,那么AE与CE的数量关系是__________.2.如图,BC=EC,∠1=∠2,要利用“ASA”判定△ABC≌△DEC,则需添加的条件为____________.第1题第2题课堂练习(1)两角和它们的夹边对应相等的两个三角形全等.
简写成“角边角”或“ASA”.(2)两角和其中一角的对边对应相等的两个三角形全等.简写成“角角边”或“AAS”.知识要点:(3)探索三角形全等是证明线段相等(对应边相等),角相等(对应角相等)等问题的基本途径。数学思想:要学会用分类的思想,转化的思想解决问题。课堂小结习题4.7第2、3题课后作业3
探索三角形全等的条件(第3课时)第四章三角形北师版七年级下册
到目前为止,你知道哪些判定三角形全等的方法?边边边(SSS)角边角(ASA)角角边(AAS)复习旧知
根据探索三角形全等的条件,至少需要三个条件,除了上述三种情况外,还有哪种情况?两边一角相等(1)两边及夹角(2)两边及其一边的对角讲授新课(1)两边及夹角三角形两边分别为2.5cm,3.5cm,它们所夹的角为40°,你能画出这个三角形吗?你画的三角形与同伴画的一定全等吗?3.5cm2.5cm40°ABC3.5cm2.5cm40°DEF结论:两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”.
以2.5cm,3.5cm为三角形的两边,长度为2.5cm的边所对的角为40°,情况又怎样?动手画一画,你发现了什么?(2)两边及其中一边的对角BCA2.5cm3.5cm40°EDF40°3.5cm2.5cm结论:两边及其一边所对的角对应相等,两个三角形不一定全等
小明做了一个如图所示的风筝,其中∠EDH=∠FDH,ED=FD,小明不用测量就能知道EH=FH吗?DEFH补充练习:DCBA
在△ABC中,AB=AC,AD是∠BAC的角平分线。那么BD与CD相等吗?为什么?解:相等理由:∵AD是∠BAC的角平分线∴∠BAD=∠CAD∵AB=AC∠BAD=∠CAD
AD=AD∴△ABD≌△ACD(SAS)∴BD=CDBCDEA如图,已知AB=AC,AD=AE。那么∠B与∠C相等吗?为什么?解:相等理由:在△ABD和△ACE中∴△ABD≌△ACE(SAS)∴∠B=∠CÐÐ===AEADAAACAB如图,∠B=∠E,AB=EF,BD=EC,那么△ABC与△FED全等吗?为什么?AC∥FD吗?为什么?FEDCBA4312在△ABC与△FED中解:全等。∵BD=EC
∴BD-CD=EC-CD。即BC=ED
∴△ABC≌△FED(SAS)∴∠1=∠2∴∠3=∠4∴AC∥FD学以致用小颖作业本上画的三角形被墨迹污染,她想画出一个与原来完全一样的三角形,她该怎么办呢?你能帮帮小颖吗?1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.课堂练习3.下列图形中有没有全等三角形,并说明全等的理由.甲8cm9cm丙8cm9cm8cm9cm乙30°30°30°你的收获课堂小结1.今天我们学习哪种方法判定两三角形全等?
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年签订空白试用期劳动合同的注意事项
- 2025企业采购合同审查核心要素
- 2025年二手奢品项目建议书
- 2025智能合约自动交易买卖期货合同
- 2025临时保安用工合同
- 《2025建材供货合同》
- 2025年畜禽规模化养殖设备合作协议书
- 2025年厢式货车项目建议书
- 2025年高级秘书职业资格考试试题及答案
- 2025年碳硫分析仪项目合作计划书
- 学校岗位安全手册指南
- 2025-2030体外诊断仪器行业市场深度分析及发展策略研究报告
- 五方股权投资合作协议书合同协议范本模板8篇
- 幼儿园大班建构游戏中幼儿自主学习行为的研究
- 慢性病护理的毕业论文范文
- 《特斯拉汽车供应链管理》课件
- 内河船舶船员基本安全知识考试题库300题(含答案)
- 无人机操控 教学设计公开课教案教学设计课件
- 《瑞幸咖啡财务造假案例分析》8400字(论文)
- 安全生产法律法规注册安全工程师考试(初级)试题与参考答案(2024年)一
- (试卷)2024贵州省初中学业水平考试·物理
评论
0/150
提交评论