土木工程外文翻译-钢筋混凝土填充框架结构对拆除两个相邻的柱的响应_第1页
土木工程外文翻译-钢筋混凝土填充框架结构对拆除两个相邻的柱的响应_第2页
土木工程外文翻译-钢筋混凝土填充框架结构对拆除两个相邻的柱的响应_第3页
土木工程外文翻译-钢筋混凝土填充框架结构对拆除两个相邻的柱的响应_第4页
土木工程外文翻译-钢筋混凝土填充框架结构对拆除两个相邻的柱的响应_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本科毕业设计外文文献及译文文献、文献、文献、资料题目:资料来源:Acomparativestudyofvariouscommerciallyavailableprogramsinslopestabilityanalysis文献、文献、文献、资料题目:资料来源:AcomparativestudyofvariouscommerciallyavailableprogramsinslopestabilityanalysisComputersandGeotechnics资料发表(出版)日期:2008・8・9院(部)专业班级姓名学号指导教师翻译日期--#-如图.3所示楼盖系统纵向(南北向)有一个托梁。根据两个混凝土构件受压的实验结果,对一个标准的混凝土柱,受压承载力为31MPa。混凝土的弹性模量大概为26300MPa左右。同样,通过横截面12.7mm的钢筋受拉实验,其屈服和极限抗拉强度分别为427和600MPa。钢筋的极限变形为0.17。钢筋的弹性模量近似为200000MPa。这个建筑按计划将被爆破摧毁。作为摧毁的一个步骤,第一层和第三层的填充墙被移除。移除时上面没有活荷载。所有的非结构部件包括隔墙、管道设备、家具都被事先搬走了,只有梁、柱、楼板梁和在边梁上的填充墙被留下。传感器布置混凝土和钢筋的应变传感器是用来测量梁和柱的应变变化的。线性电位计用来测量整体和局部变形。混凝土应变测量仪常900mm,最大应变为土0.02•钢筋应变测量仪应变极限为土0.2。应变测量仪可以带到几百千赫兹。电位计用来测量建筑中梁沿一端的转动和整体位移,这些以后将讲到。电位计的分辨率为0.01mm,最大速度为1.0m/s,实验中最大记录速度为0.35m/s。有限元模型通过有限单元法,在软件SAP2000【8】中生成一个建筑模型。梁和柱都被抽象成Bernoulli单元。T和L型梁的翼缘计算宽度为四倍的较厚板的厚度【5】。塑性铰可以发生在任何钢筋可能发生屈服的地方,包括单元的端点、加筋肋分离点和弯矩的屈服点。在分析中,塑性铰的范围是构件高度的一半。现行版本的SAP2000不能计算出单元斜裂缝的构成。为了得出正确的构件挠曲刚度,反复做以下步骤:首先假设建筑的所有单元都是没有裂缝的;然后,需要弯矩同构件的出现裂缝的弯矩相比较。分别降低板厚和梁的惯性矩35%,使需求弯矩大于裂缝出现弯矩。梁外部出现裂缝的正负弯矩分别为58.2knM和37.9knM。需要注意的是柱子没有裂缝出现。再后,再按以上方法重新分析建筑和弯矩简图。重复这些步骤直到所有的裂缝区域被鉴定和用模型表示出来。除了两端区域建筑结构里的梁上部不配筋(图.4)。例如,梁A1-A2在距A1点305mm以后,其上部不配筋(如图.4和5)。为了确定出可能丧失挠曲强度的截面位置,将裂纹铰布置在上部没有配筋的可能的弯曲破坏点上。塑性铰的挠曲强度设为于Mcr相等,当所受的弯矩达到Mcr时,该截面即发生破坏。

Fig.4.Rcmforccmcnldetailofcolumnjiand(a)BeamA3-B3insecondfloor;and(b)BeamA1-A2.图厶二层的梁A3-B3和梁A1-A2详细配筋情况楼盖系统有沿纵向(南北向)的次梁。图.6所示为一典型的楼盖的横截面。为了计算出次梁和板的可能的非线性响应,用梁单元为楼盖建立模型。次梁按T型梁计算,翼缘的计算宽度为各自板厚的四倍【5】。选取车抠和轴3的纵梁和其之间的一个宽20英寸的梁间的格栅为板的计算模型。为了给出板沿横向的计算模型,同样用一个宽20英寸于横梁平行的梁。在方形的板中其剪力流和梁单元的中的不一样。所以其扭转刚度取为整个截面刚度的一半【9】。

图.5梁的上部配筋弯曲位置(于梁A1-A2相似,在邻近建筑靠近柱A1的地方)Fig.5.LocalionofbendsinbeamLopreinfbrocmcnLtinanadjacentannexbuildingalalocationsimilaridbeamA1-A2.closetocolumnA1)L20<MT|SD£mm;uu\j4(xr20<MT|SD£mm;uu\j4(xr

(1<Kfrini'BSE"^10mmj二UQUJBaE-d优Q-EQe(u>2D.C-0'I沖m时._建筑的2、4、5、6层有填充墙,并在门窗等开口位置有过梁,如前面提到的第1、三层的填充墙,在爆除前已经拆掉。填充墙是用良好的空隙砖砌成的,空心砖的净空是其总大小的一半。填充墙的平面效应增强了建筑的刚度和强度,并且影响建筑的对荷载反应即变形。如果忽略墙的影响将得不到准确的建筑的刚度和强度。

在SAP2000中考虑了两种填充墙的形式:一种是用平面框架模型(模型A),另一种是FEMA365【10】中建议的受压杆件模型(模型B)。4.1模型A是平面框架模型,但是,现行版本的SAP2000只能计算线性框架模型,不能计算裂缝的发展情况。填充墙的抗拉强度大概为26psi,弹性模量为644ksi【10】。由于裂缝的发展对填充墙的刚度影响很大,重复以下步骤来计算裂缝的形成:(1)假设填充墙是线性的而且没有开裂,运行非线性历史分析。由于梁中的塑性铰的存在,梁中弯矩大于裂缝出现弯矩时候,对截面惯性矩有一个折减。(2)判定填充墙出现的依据是看其应力于墙的抗拉强度大小关系。(3)节点在拉应力大于抗拉强度的地方分离。重复上面的步骤直到裂缝区域被确定。4.2•模型B(受压杆件模型)如FEMA356【10】所述用受压杆件来代替填充墙,杆件的方向根据移除柱后的结构变形形式和开口位置确定。柱的移除按以下步骤模拟柱的移除。(1)结构是在只受永久荷载下分析的,内力在柱端测定,将随着柱的移除而卸荷。(2)模型的建立是在移除第一层的柱A2、A3的情况下进行的。结构同样是在永久荷载下进行静态分析的。在此情况下,测得的柱端内力被当成永久外部荷载施加在结构上。注意此分析结果跟第一步的分析是等价的。(3)第二步中大小相等方向相反的柱端力,被瞬间施加在原柱的位置上,然后进行动态分析。实验和分析结果的比较结构计算最大竖向位移在第二层的柱A3上,图7所示为按模型A的实验和分析的梁A3竖向位移的比较。实验数据是用三个粘在A3两端的传感器记录的。实验和分析得到的最大位移分别是6.1mm和6.4mm,相差尽为4%。实验和分析的位移产生所用时间分别为0.069S和0.066S。分析结果显示永久位移为5.3mm,比实验结果小14%,实验结果为6.1mm。e-jcBE兽e-jcBE兽EQ.5O-eo-uOJAF念8.VcnicaldisplaocmcnLhistoricsofjoin!A3insecondfloorcstimatedanalyLicallybasedonModelsAandB(FEM)图.8.第二层的柱A3在模型A和B下分别沿时间的竖向位移图.8.比较了第二层的柱A3分别在模型A和B下分析的沿时间的竖向位移。由图中可以看出,按受压杆件模型(模型B)得出的最大竖向位移为11.4mm,比用模型A得出的结果高出约80%。在图.7•可以看出按模型A得出的结果与实验结果是想接近的,B模型得出的结构变形过高。如果最大竖向位移偏大的话,填充墙开裂情况会更加严重,更偏向于受压杆件形成,

模型A和模型B得出结果差异将减小。图.9.比较了用模型A时第二层的柱A2的分析和实验的位移值。同样,第一次达到最大位移值的实验和分析值非常接近,分析的永久位移值比实验的位移值略微低些。图.10.所示为根据模型A得出的最大竖向位移的结构变形放大200倍后的情况。A3A1)A2lV串hFloor3rdFloor2A3A1)A2lV串hFloor3rdFloor2ndFlour5'hFloorB3Basem&nlBasem&nl■join^lix^liDn¥Crack?0Pbelk:hjinotts图.10•按模型A,FEM分析的结构变形形式(第二层的实验得出变形形式也给出)通过实测得的变形形式在图中也用实线标出了。在二层的梁A1-A2、A3-B3的上下端部应力重分配复杂的地方共用了14个电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论