版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省2024届八年级数学第一学期期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,△ABC中,AB=6,AC=4,∠ABC和∠ACB的平分线交于点P,过点P作DEBC分别交AB,AC于点D,E,则△ADE的周长为(
)A.10 B.12 C.14 D.不能确定2.下列运算正确的是A. B. C. D.3.若使分式有意义,则的取值范围是()A. B. C. D.4.下列图形中对称轴只有两条的是()A. B. C. D.5.如图,把一张长方形纸片沿对角线折叠,点的对应点为,与相交于点,则下列结论不一定成立的是()A.是等腰三角形 B.C.平分 D.折叠后的图形是轴对称图形6.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.47.如图,矩形的对角线与相交于点分别为的中点,,则对角线的长等于()A. B. C. D.8.如图,点在线段上,且,,补充一个条件,不一定使成立的是()A. B. C. D.9.如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点出发,沿长方体表面到点处吃食物,那么它爬行最短路程是()A. B. C. D.10.已知点P(0,m)在y轴的负半轴上,则点M(﹣m,1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.如图,根据计算长方形ABCD的面积,可以说明下列哪个等式成立()A. B.C. D.12.如图,正五边形ABCDE,BG平分∠ABC,DG平分正五边形的外角∠EDF,则∠G=()A.36°B.54°C.60°D.72°二、填空题(每题4分,共24分)13.如图,在△ABC中,AB=AC,DE垂直平分AB于点E,交AC于点D,若△ABC的周长为26cm,BC=6cm,则△BCD的周长是__________cm.14.如图,中,,,,在上截取,使,过点作的垂线,交于点,连接,交于点,交于点,,则____________.15.计算:____.16.如图所示,是由截面相同的长方形墙砖粘贴的部分墙面,根据图中信息可得每块墙砖的截面面积是__________.17.如图,点、分别是、的中点,若,则_____.18.一个等腰三角形的周长为12cm,其中一边长为3cm,则该等腰三角形的底边长为________三、解答题(共78分)19.(8分)阅读下列一段文字,然后回答下列问题.已知平面内两点M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算:MN=.例如:已知P(3,1)、Q(1,﹣2),则这两点间的距离PQ==.特别地,如果两点M(x1,y1)、N(x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐标轴,那么这两点间的距离公式可简化为MN=丨x1﹣x2丨或丨y1﹣y2丨.(1)已知A(1,2)、B(﹣2,﹣3),试求A、B两点间的距离;(2)已知A、B在平行于x轴的同一条直线上,点A的横坐标为5,点B的横坐标为﹣1,试求A、B两点间的距离;(3)已知△ABC的顶点坐标分别为A(0,4)、B(﹣1,2)、C(4,2),你能判定△ABC的形状吗?请说明理由.20.(8分)已知:直线,为图形内一点,连接,.(1)如图①,写出,,之间的等量关系,并证明你的结论;(2)如图②,请直接写出,,之间的关系式;(3)你还能就本题作出什么新的猜想?请画图并写出你的结论(不必证明).21.(8分)(2017广东省)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.22.(10分)某高速公路有的路段需要维修,拟安排甲、乙两个工程队合作完成,规定工期不得超过一个月(30天),已知甲队每天维修公路的长度是乙队每天维修公路长度的2倍,并且在各自独立完成长度为公路的维修时,甲队比乙队少用6天(1)求甲乙两工程队每天能完成维修公路的长度分别是多少(2)若甲队的工程费用为每天2万元,乙队每天的工程费用为1.2万元,15天后乙队另有任务,余下工程由甲队完成,请你判断能否在规定的工期完成且总费用不超过80万元23.(10分)(1)已知,求的值.(2)化简:,并从±2,±1,±3中选择一个合适的数求代数式的值.24.(10分)已知点P(8–2m,m–1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.25.(12分)用无刻度直尺作图并解答问题:如图,和都是等边三角形,在内部做一点,使得,并给予证明.26.先化简,再化简:,请你从﹣2<a<2的整数解中选取一个合适的数代入求值.
参考答案一、选择题(每题4分,共48分)1、A【分析】由题意易得△BDP和△PEC为等腰三角形,然后根据等腰三角形的性质可求解.【题目详解】解:∠ABC和∠ACB的平分线交于点P,∠ABP=∠PBC,∠ACP=∠PCB,DE∥BC,∠DPB=∠PBC,∠DPB=∠PBC=∠ABP,BD=DP,同理可证PE=EC,AB=6,AC=4,,故选A.【题目点拨】本题主要考查等腰三角形的性质与判定,关键是熟练掌握“双平等腰”这个模型.2、A【解题分析】选项A,选项B,,错误;选项C,,错误;选项D,,错误.故选A.3、B【解题分析】根据分式有意义的条件是分母不等于零求解.【题目详解】解:由题意得,,解得,,故选:B.【题目点拨】本题主要考查的是分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.4、C【分析】根据对称轴的定义,分别找出四个选项的中的图形的对称轴条数,即可得到答案.【题目详解】圆有无数条对称轴,故A不是答案;等边三角形有三条对称轴,故B不是答案;长方形有两条对称轴,故C是答案;等腰梯形只有一条对称轴,故D不是答案.故C为答案.【题目点拨】本题主要考查了对称轴的基本概念(如果沿着某条直线对折,对折的两部分是完全重合的,那么这条直线就叫做这个图形的对称轴),熟记对称轴的概念是解题的关键.5、C【分析】由折叠前后的两个图形全等可以得出∠FBD=∠DBC,由长方形的性质可以得出AD∥BC,所以∠FDB=∠FBD=∠DBC,故得出是等腰三角形,根据折叠的性质可证的,折叠前后的两个图形是轴对称图形.【题目详解】解:∵∴∠FBD=∠DBC∵AD∥BC∴∠FDB=∠FBD=∠DBC∴是等腰三角形∴A选项正确;∵∴AB=ED在△AFB和△FED中∴∴B选项正确;折叠前后的图形是轴对称图形,对称轴为BD∴D选项正确;故选:C.【题目点拨】本题主要考查的是折叠前后的图形是轴对称图形并且全等,根据全等三角形的性质是解此题的关键.6、D【题目详解】①根据作图的过程可知,AD是∠BAC的平分线.故①正确.②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.④∵如图,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•AD.∴S△DAC:S△ABC.故④正确.综上所述,正确的结论是:①②③④,,共有4个.故选D.7、C【分析】根据中位线的性质可得OD=2PQ=5,再根据矩形对角线互相平分且相等,可得AC=BD=2OD=1.【题目详解】∵P,Q分别为AO,AD的中点,∴PQ是△AOD的中位线∴OD=2PQ=5∵四边形ABCD为矩形∴AC=BD=2OD=1.故选C.【题目点拨】本题考查了三角形中位线,矩形的性质,熟记三角形的中位线等于第三边的一半,矩形对角线互相平分且相等是解题的关键.8、A【分析】根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL依次对各选项分析判断即可.【题目详解】∵,∴BC=EF.A.若添加,虽然有两组边相等,但∠1与∠2不是它们的夹角,所以不能判定,符合题意;B.若添加在△ABC和△DEF中,∵,,BC=EF,∴(SAS),故不符合题意;C.若添加在△ABC和△DEF中,∵,,BC=EF,∴(AAS),故不符合题意;D.若添加在△ABC和△DEF中,∵,BC=EF,,∴(ASA),故不符合题意;故选A.【题目点拨】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9、B【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【题目详解】如图:
根据题意,如上图所示,最短路径有以下三种情况:
(1)AB2=(2+3)2+42=41;
(2)AB2=32+(4+2)2=45;
(3)AB2=22+(4+3)2=53;
综上所述,最短路径应为(1)所示,所以AB2=41,即AB=故选:B【题目点拨】此题考查的是勾股定理的应用,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.10、A【分析】根据y轴的负半轴上的点横坐标等于零,纵坐标小于零,可得m的值,再根据不等式的性质解答.【题目详解】解:∵点P(0,m)在y轴的负半轴上,∴m<0,∴﹣m>0,∴点M(﹣m,1)在第一象限,故选:A.【题目点拨】本题主要考查平面直角坐标系有关的概念和不等式及其性质.解题的关键是掌握y轴的负半轴上的点的特点.11、D【题目详解】长方形ABCD的面积的两种表示方法可得,故选D.12、B【分析】先求出正五边形一个的外角,再求出内角度数,然后在四边形BCDG中,利用四边形内角和求出∠G.【题目详解】∵正五边形外角和为360°,∴外角,∴内角,∵BG平分∠ABC,DG平分正五边形的外角∠EDF∴,在四边形BCDG中,∴故选B.【题目点拨】本题考查多边形角度的计算,正多边形可先计算外角,再计算内角更加快捷简便.二、填空题(每题4分,共24分)13、1【分析】根据线段垂直平分线性质求出AD=BD,根据△ABC周长求出AC,推出△BCD的周长为BC+CD+BD=BC+AC,代入求出即可.【题目详解】∵DE垂直平分AB,
∴AD=BD,
∵AB=AC,△ABC的周长为26,BC=6,
∴AB=AC=(26-6)÷2=10,
∴△BCD的周长为BC+CD+BD=BC+CD+AD=BC+AC=6+10=1.故答案为:1.【题目点拨】本题考查了线段垂直平分线性质和等腰三角形的应用,解此题的关键是求出AC长和得出△BCD的周长为BC+AC,注意:线段垂直平分线上的点到线段两个端点的距离相等.14、【解题分析】过点D作DM⊥BD,与BF延长线交于点M,先证明△BHE≌△BGD得到∠EHB=∠DGB,再由平行和对顶角相等得到∠MDG=∠MGD,即MD=MG,在△△BDM中利用勾股定理算出MG的长度,得到BM,再证明△ABC≌△MBD,从而得出BM=AB即可.【题目详解】解:∵AC∥BD,∠ACB=90°,∴∠CBD=90°,即∠1+∠2=90°,又∵BF⊥AB,∴∠ABF=90°,即∠8+∠2=90°,∵BE=BD,∴∠8=∠1,在△BHE和△BGD中,,∴△BHE≌△BGD(ASA),∴∠EHB=∠DGB∴∠5=∠6,∠6=∠7,∵MD⊥BD∴∠BDM=90°,∴BC∥MD,∴∠5=∠MDG,∴∠7=∠MDG∴MG=MD,∵BC=7,BG=4,设MG=x,在△BDM中,BD2+MD2=BM2,即,解得x=,在△ABC和△MBD中,∴△ABC≌△MBD(ASA)AB=BM=BG+MG=4+=.故答案为:.【题目点拨】本题考查了全等三角形的判定和性质,勾股定理,适当添加辅助线构造全等三角形,利用全等三角形的性质求出待求的线段,难度中等.15、【分析】根据多项式乘以多项式的计算法则计算即可得到答案.【题目详解】,故答案为:.【题目点拨】此题考查整式乘法:多项式乘以多项式,用第一个多项式的每一项分别乘以另一个多项式的每一项,并把结果相加,正确掌握多项式乘以多项式的计算法则是解题的关键.16、【分析】设每块墙砖的长为xcm,宽为ycm,根据题意,有“三块横放的墙砖比一块竖放的墙砖高5cm,两块横放的墙砖比两块竖放的墙砖低18cm”列方程组求解可得.【题目详解】解:设每块墙砖的长为xcm,宽为ycm,根据题意得:,解得:,∴每块墙砖的截面面积是:;故答案为:112.【题目点拨】本题主要考查二元一次方程组的应用,理解题意找到题目蕴含的相等关系列方程组是解题的关键.17、1【分析】根据中线的性质即可求解.【题目详解】∵点、分别是、的中点,∴AD是△ABC的中线,∴∴DE是△ADC的中线,∴故答案为:1.【题目点拨】此题主要考查中线的性质,解题的关键是熟知中线平分三角形的面积.18、3cm【分析】根据等腰三角形的性质和构成三角形的条件分两种情况分类讨论即可求出答案.【题目详解】①当3cm是等腰三角形的底边时,则腰长为:cm,能够构成三角形;②当3cm是等腰三角形的腰长时,则底边长为:cm,不能构成三角形,故答案为:3cm.【题目点拨】本题考查了等腰三角形的性质和构成三角形的条件,要最短的两边之和大于第三边就能构成三角形,对于等腰三角形,要两腰之和大于底边就能构成三角形.三、解答题(共78分)19、(1)(2);(3)△ABC是直角三角形,【解题分析】(1)(2)根据两点间的距离公式即可求解;
(3)先根据两点间的距离公式求出AB,BC,AC的长,再根据勾股定理的逆定理即可作出判断.【题目详解】(1)(2)(3)△ABC是直角三角形,理由:∵∴∴∴△ABC是直角三角形.【题目点拨】本题主要考查两点间的距离公式,难度较大,解决本题的关键是熟练掌握两点间的距离公式,两点间的距离公式:若平面内两点M(x1,y1)、N(x2,y2),则MN=.注意熟记公式.20、(1),见解析;(2);(3),见解析【分析】(1)如图①,延长交于点,根据两直线平行,内错角相等可得,再根据三角形外角的性质即可得解;(2)如图②中,过P作PG∥AB,利用平行线的性质即可解决问题;(3)如图③,在利用外角的性质以及两直线平行,内错角相等的性质,即可得出.【题目详解】证明:(1)如图①,延长交于点.在中则有.(三角形一个外角等于和它不相邻的两个内角的和)又,(两直线平行,内错角相等)..(图①)(图②)(2)如图②中,过P作PG∥AB,∵AB//CD∴PG//CD∵AB//PG∴∠ABP+∠BPG=180°∵PG//CD∴∠GPD+∠PDC=180°∴∠ABP+∠BPG+∠GPD+∠PDC=360°∴故答案为:.(3)如图③.证明如下:(图③)在中则有.(三角形一个外角等于和它不相邻的两个内角的和)又,(两直线平行,内错角相等).【题目点拨】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作出辅助线是解题的关键.21、(1)作图见见解析;(2)100°.【解题分析】试题分析:(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.试题解析:(1)如图所示:(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.22、(1)甲、乙工程队每天能完成维修公路的长度分别是8km和4km;(2)能在规定工期完成且总费用不超过80万,见解析【分析】(1)设乙工程队每天能完成维修公路的长度是km,根据题意找到等量关系列出分式方程即可求解;(2)根据题意求出工程完成需要的天数,再求出总费用即可求解.【题目详解】解:(1)设乙工程队每天能完成维修公路的长度是km.依题意得解得:经检验:是原方程的解.则甲工程队每天能完成维修公路的长度是(km).答:甲、乙工程队每天能完成维修公路的长度分别是8km和4km.(2),,天,所以能在规定工期内完成;万,万,<80,所以能在规定工期完成且总费用不超过80万.【题目点拨】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程求解.23
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《变频控制技术》2022-2023学年期末试卷
- 合同法第52条5项
- 新入职员工的意识培训
- 2025版高考英语一轮复习第1部分人与自我主题群1生活与学习主题语境5认识自我丰富自我完善自我2教师用书教案
- 新高考2025届高考政治小题必练1神奇的货币
- 大班音乐尝葡萄课件
- 2024年拉萨客运资格证答题软件下载
- 2024宾馆转让合同范文
- 2024屋顶防水合同范文
- 2024小额贷款担保合同范本
- 国企纪检监察嵌入式监督的探索与实践
- 浅议小升初数学教学衔接
- 设备安装应急救援预案
- 深基坑工程降水技术及现阶段发展
- 暂堵压裂技术服务方案
- 《孔乙己》公开课一等奖PPT优秀课件
- 美的中央空调故障代码H系列家庭中央空调(第一部分多联机)
- 业主委员会成立流程图
- (完整版)全usedtodo,beusedtodoing,beusedtodo辨析练习(带答案)
- 广联达办公大厦工程施工组织设计
- 疑难病例HELLP综合征
评论
0/150
提交评论