山东省邹城市第一中学2024届数学高一上期末检测模拟试题含解析_第1页
山东省邹城市第一中学2024届数学高一上期末检测模拟试题含解析_第2页
山东省邹城市第一中学2024届数学高一上期末检测模拟试题含解析_第3页
山东省邹城市第一中学2024届数学高一上期末检测模拟试题含解析_第4页
山东省邹城市第一中学2024届数学高一上期末检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省邹城市第一中学2024届数学高一上期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知某几何体的三视图如图所示,则该几何体的最长棱为()A.4 B.C. D.22.已知函数,且,则满足条件的的值得个数是A.1 B.2C.3 D.43.若函数的图象(部分)如图所示,则的解析式为()A. B.C. D.4.已知一个样本容量为7的样本的平均数为5,方差为2,现样本加入新数据4,5,6,此时样本容量为10,若此时平均数为,方差为,则()A., B.,C., D.,5.已知函数,则()A.当且仅当时,有最小值为B.当且仅当时,有最小值为C.当且仅当时,有最大值为D.当且仅当时,有最大值为6.在平面直角坐标系中,大小为的角始边与轴非负半轴重合,顶点与原点O重合,其终边与圆心在原点,半径为3的圆相交于一点P,点Q坐标为,则的面积为()A. B.C. D.27.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,小数记录法的数据V和五分记录法的数据L满足,已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为()(注:)A.0.6 B.0.8C.1.2 D.1.58.已知全集,集合,,那么阴影部分表示的集合为A. B.C. D.9.方程的实数根大约所在的区间是A. B.C. D.10.已知扇形的半径为,面积为,则这个扇形的圆心角的弧度数为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知[x]表示不超过x的最大整数,定义函数f(x)=x-[x].有下列结论:①函数的图象是一条直线;②函数f(x)的值域为[0,1);③方程f(x)=有无数个解;④函数是R上的增函数.其中正确的是____.(填序号)12.若函数,则函数的值域为___________.13.已知,,且,则的最小值为______14.下面四个命题:①定义域上单调递增;②若锐角,满足,则;③是定义在上的偶函数,且在上是增函数,若,则;④函数的一个对称中心是;其中真命题的序号为______.15.已知在同一平面内,为锐角,则实数组成的集合为_________16.函数,且)的图象恒过定点,则点的坐标为___________;若点在函数的图象上,其中,,则的最大值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)若,求的范围;(2)若,,且,,求.18.已知全集,集合,.(1)当时,求;(2)若,且,求的取值范围.19.已知函数.(1)判断在上的单调性,并证明你的结论;(2)是否存在,使得是奇函数?若存在,求出所有的值;若不存在,请说明理由.20.如图,在四棱锥中,底面是菱形,,且侧面平面,点是的中点(1)求证:(2)若,求证:平面平面21.设向量,且与不共线(1)求证:;(2)若向量与的模相等,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据三视图得到几何体的直观图,然后结合图中的数据计算出各棱的长度,进而可得最长棱【题目详解】由三视图可得,该几何体是如图所示的四棱锥,底面是边长为2的正方形,侧面是边长为2的正三角形,且侧面底面根据图形可得四棱锥中的最长棱为和,结合所给数据可得,所以该四棱锥的最长棱为故选B【题目点拨】在由三视图还原空间几何体时,要结合三个视图综合考虑,根据三视图表示的规则,空间几何体的可见轮廓线在三视图中为实线、不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以主视图和俯视图为主,结合左视图进行综合考虑.熟悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.考查空间想象能力和计算能力2、D【解题分析】令则即当时,当时,则令,,由图得共有个点故选3、A【解题分析】根据正弦型函数最小正周期公式,结合代入法进行求解即可.【题目详解】设函数的最小正周期为,因为,所以由图象可知:,即,又因为函数过,所以有,因为,所以令,得,即,故选:A4、B【解题分析】设这10个数据分别为:,进而根据题意求出和,进而再根据平均数和方差的定义求得答案.【题目详解】设这10个数据分别为:,根据题意,,所以,.故选:B.5、A【解题分析】由基本不等式可得答案.【题目详解】因为,所以,当且仅当即时等号成立.故选:A.6、B【解题分析】根据题意可得、,结合三角形的面积公式计算即可.【题目详解】由题意知,,,所以.故选:B7、B【解题分析】当时,即可得到答案.【题目详解】由题意可得当时故选:B8、D【解题分析】由韦恩图可知阴影部分表示的集合为,求出,计算得到答案【题目详解】阴影部分表示的集合为,故选【题目点拨】本题主要考查的是韦恩图表达集合的关系和运算,属于基础题9、C【解题分析】方程的根转化为函数的零点,判断函数的连续性以及单调性,然后利用零点存在性定理推出结果即可【题目详解】方程的根就是的零点,函数是连续函数,是增函数,又,,所以,方程根属于故选C【题目点拨】本题考查函数零点存在性定理的应用,考查计算能力10、A【解题分析】由扇形的面积公式即可求解.【题目详解】解:设扇形圆心角的弧度数为,则扇形面积为,解得,因为,所以扇形的圆心角的弧度数为4.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、②③##③②【解题分析】画出的图象,即可判断四个选项的正误.【题目详解】画出函数的图象,如图所示,可以看出函数的图象不是一条直线,故A错误;函数f(x)的值域为,故②正确;方程有无数个解,③正确;函数是分段函数,且函数不是R上的增函数,故④错误.故答案为:②③12、【解题分析】求出函数的定义域,进而求出的范围,利用换元法即可求出函数的值域.【题目详解】由已知函数的定义域为又,定义域需满足,令,因为,所以,利用二次函数的性质知,函数的值域为故答案为:.13、6【解题分析】由可知,要使取最小值,只需最小即可,故结合,求出的最小值即可求解.【题目详解】由,,得(当且仅当时,等号成立),又因,得,即,由,,解得,即,故.因此当时,取最小值6.故答案为:6.14、②③④【解题分析】由正切函数的单调性,可以判断①真假;根据正弦函数的单调性,结合诱导公式,可以判断②的真假;根据函数奇偶性与单调性的综合应用,可以判断③的真假;根据正弦型函数的对称性,我们可以判断④的真假,进而得到答案【题目详解】解:由正切函数的单调性可得①“在定义域上单调递增”为假命题;若锐角、满足,即,即,则,故②为真命题;若是定义在上的偶函数,且在上是增函数,则函数在上为减函数,若,则,则,故③为真命题;由函数则当时,故可得是函数的一个对称中心,故④为真命题;故答案为:②③④【题目点拨】本题考查的知识点是命题的真假判断与应用,函数单调性的性质,偶函数,正弦函数的对称性,是对函数性质的综合考查,熟练掌握基本初等函数的性质是解答本题的关键15、【解题分析】分析:根据夹角为锐角得向量数量积大于零且向量不共线,解得实数组成的集合.详解:因为为锐角,所以且不共线,所以因此实数组成的集合为,点睛:向量夹角为锐角的充要条件为向量数量积大于零且向量不共线,向量夹角为钝角的充要条件为向量数量积小于零且向量不共线.16、①②.##0.5【解题分析】根据对数函数图象恒过定点求出点A坐标;代入一次函数式,借助均值不等式求解作答.【题目详解】函数,且)中,由得:,则点;依题意,,而,,则,当且仅当2m=n=1时取“=”,即,所以点的坐标为,的最大值为.故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)利用公式化简函数解析式可得,将函数解析式代入不等式得,即可求得x的取值范围;(2)由求得,根据的范围求出,,从而求得,,再利用两角差的余弦公式即可得解.【题目详解】若,则,,(2)因为,所以,,因为,所以,,,【题目点拨】本题考查三角函数和差化积公式,两角和与差的正弦公式,同角三角函数的平方关系,计算时注意角的取值范围,属于中档题.18、(1)(2)【解题分析】(1)解出不等式,然后可得答案;(2)由条件可得,,解出即可.【小问1详解】(1)由题意得:.当时,,所以,.【小问2详解】因为,所以,即.又,所以,解得.所以的取值范围.19、(1)减函数,证明见解析;(2),理由见解析【解题分析】(1)由单调性定义判断;(2)根据奇函数的性质由求得,然后再由奇函数定义验证【题目详解】(1)是上的减函数设,则,所以,,即,,所以,所以是上的减函数(2)若是奇函数,则,,时,,所以,所以为奇函数所以时,函数为奇函数20、(1)见解析;(2)见解析【解题分析】分析:(1)可根据为等腰三角形得到,再根据平面平面可以得到平面,故.(2)因及是中点,从而有,再根据平面得到,从而平面,故平面平面.详解:(1)证明:因为,点是棱的中点,所以,平面.因为平面平面,平面平面,平面,所以平面,又因为平面,所以.(2)证明:因为,点是的中点,所以.由(1)可得,又因为,所以平面,又因为平面,所以平面平面点睛:线线垂直的证明,可归结为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论