福建省漳平市一中2024届高一上数学期末教学质量检测试题含解析_第1页
福建省漳平市一中2024届高一上数学期末教学质量检测试题含解析_第2页
福建省漳平市一中2024届高一上数学期末教学质量检测试题含解析_第3页
福建省漳平市一中2024届高一上数学期末教学质量检测试题含解析_第4页
福建省漳平市一中2024届高一上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省漳平市一中2024届高一上数学期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.给定函数:①;②;③;④,其中在区间上单调递减函数序号是()A.①② B.②③C.③④ D.①④2.已知圆上的一段弧长等于该圆的内接正方形的边长,则这段弧所对的圆周角的弧度数为()A. B.C. D.3.在正项等比数列中,若依次成等差数列,则的公比为A.2 B.C.3 D.4.已知函数,,则()A.的最大值为 B.在区间上只有个零点C.的最小正周期为 D.为图象的一条对称轴5.主视图为矩形的几何体是()A. B.C. D.6.函数f(x)=2x+x-2的零点所在区间是()A. B.C. D.7.若直线与曲线有两个不同的交点,则实数的取值范围为A. B.C. D.8.已知α是第三象限的角,且,则()A. B.C. D.9.cos600°值等于A. B.C. D.10.已知为两条直线,为两个不同的平面,则下列说法正确的是A.若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师傅加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为,则徒弟加工2个零件都是精品的概率为______12.幂函数的图像在第___________象限.13.已知一个圆锥的母线长为1,其高与母线的夹角为45°,则该圆锥的体积为____________.14.函数的定义域为______.15.若扇形的面积为,半径为1,则扇形的圆心角为___________.16.函数的反函数是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算下列各式:(1)(式中字母均为正数);(2).18.已知函数为奇函数.(1)求实数a的值;(2)求的值.19.已知,,且函数有奇偶性,求a,b的值20.已知函数,其中,且.(1)求的值及的最小正周期;(2)当时,求函数的值域.21.已知集合,或,.(1)求,;(2)求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解.【题目详解】①,为幂函数,且的指数,在上为增函数,故①不可选;②,,为对数型函数,且底数,在上为减函数,故②可选;③,在上为减函数,在上为增函数,故③可选;④为指数型函数,底数在上为增函数,故④不可选;综上所述,可选的序号为②③,故选B.【题目点拨】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题.2、C【解题分析】求出圆内接正方形边长(用半径表示),然后由弧度制下角的定义可得【题目详解】设此圆的半径为,则正方形的边长为,设这段弧所对的圆周角的弧度数为,则,解得,故选:C.【题目点拨】本题考查弧度制下角的定义,即圆心角等于所对弧长除以半径.本题属于简单题3、A【解题分析】由等差中项的性质可得,又为等比数列,所以,化简整理可求出q的值【题目详解】由题意知,又为正项等比数列,所以,且,所以,所以或(舍),故选A【题目点拨】本题考查等差数列与等比数列的综合应用,熟练掌握等差中项的性质,及等比数列的通项公式是解题的关键,属基础题4、D【解题分析】首先利用二倍角公式及辅助角公式将函数化简,再结合正弦函数的性质计算可得;【题目详解】解:函数,可得的最大值为2,最小正周期为,故A、C错误;由可得,即,可知在区间上的零点为,故B错误;由,可知为图象的一条对称轴,故D正确故选:D5、A【解题分析】根据几何体的特征,由主视图的定义,逐项判断,即可得出结果.【题目详解】A选项,圆柱的主视图为矩形,故A正确;B选项,圆锥的主视图为等腰三角形,故B错;C选项,棱锥的主视图为三角形,故C错;D选项,球的主视图为圆,故D错.故选:A.【题目点拨】本题主要考查简单几何体的正视图,属于基础题型.6、C【解题分析】根据函数零点的存在性定理可得函数零点所在的区间【题目详解】解:函数,,(1),根据函数零点的存在性定理可得函数零点所在的区间为,故选C【题目点拨】本题主要考查函数的零点的存在性定理的应用,属于基础题7、D【解题分析】表示的曲线为圆心在原点,半径是1的圆在x轴以及x轴上方的部分作出曲线的图象,在同一坐标系中,再作出斜率是1的直线,由左向右移动,可发现,直线先与圆相切,再与圆有两个交点,直线与曲线相切时m值为,直线与曲线有两个交点时的m值为1,则故选D8、B【解题分析】由已知求得,则由诱导公式可求.【题目详解】α是第三象限的角,且,,.故选:B.9、B【解题分析】利用诱导公式化简即可得到结果.【题目详解】cos600°故选B【题目点拨】本题考查利用诱导公式化简求值,考查特殊角的三角函数值,属于基础题.10、D【解题分析】A中,有可能,故A错误;B中,显然可能与斜交,故B错误;C中,有可能,故C错误;D中,由得,,又所以,故D正确.二、填空题:本大题共6小题,每小题5分,共30分。11、##0.25【解题分析】结合相互独立事件的乘法公式直接计算即可.【题目详解】记师傅加工两个零件都是精品的概率为,则,徒弟加工两个零件都是精品的概率为,则师徒二人各加工两个零件都是精品的概率为,求得,故徒弟加工两个零件都是精品的概率为.故答案为:12、【解题分析】根据幂函数的定义域及对应值域,即可确定图像所在的象限.【题目详解】由解析式知:定义域为,且值域,∴函数图像在一、二象限.故答案为:一、二.13、##【解题分析】由题可得,然后利用圆锥的体积公式即得.【题目详解】设圆锥的底面半径为r,高为h,由圆锥的母线长为1,其高与母线的夹角为45°,∴,∴该圆锥的体积为.故答案为:.14、且【解题分析】由根式函数和分式函数的定义域求解.【题目详解】由,解得且,所以函数的定义域为且故答案为:且15、【解题分析】直接根据扇形的面积公式计算可得答案【题目详解】设扇形的圆心角为,因为扇形的面积为,半径为1,所以.解得,故答案为:16、;【解题分析】根据指数函数与对数函数互为反函数直接求解.【题目详解】因为,所以,即的反函数为,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)根据给定条件利用指数运算法则化简作答.(2)根据给定条件,利用对数换底公式及对数运算性质计算作答.【小问1详解】依题意,.【小问2详解】.18、(1)(2)【解题分析】(1)由奇函数定义求;(2)代入后结合对数恒等式计算【题目详解】(1)因为函数为奇函数,所以恒成立,可得.(2)由(1)可得.所以.【题目点拨】本题考查函数的奇偶性,考查对数恒等式,属于基础题19、为奇函数,,【解题分析】由函数奇偶性的定义列方程求解即可【题目详解】若为奇函数,则,所以恒成立,即,所以恒成立,所以,解得,所以当为奇函数时,,若为偶函数,则,所以恒成立,得,得,不合题意,所以不可能是偶函数,综上,为奇函数,,20、(1),(2)【解题分析】(1)利用两角和正弦公式和辅助角公式化简,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论