2024届甘肃省兰州市一中高一数学第一学期期末达标检测模拟试题含解析_第1页
2024届甘肃省兰州市一中高一数学第一学期期末达标检测模拟试题含解析_第2页
2024届甘肃省兰州市一中高一数学第一学期期末达标检测模拟试题含解析_第3页
2024届甘肃省兰州市一中高一数学第一学期期末达标检测模拟试题含解析_第4页
2024届甘肃省兰州市一中高一数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省兰州市一中高一数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.A. B.C.1 D.2.已知角α的终边过点P(4,-3),则sinα+cosα的值是()A. B.C. D.3.有位同学家开了个小卖部,他为了研究气温对热饮销售的影响,经过统计得到一天所卖的热饮杯数(y)与当天气温(x℃)之间的线性关系,其回归方程为=-2.35x+147.77.如果某天气温为2℃,则该小卖部大约能卖出热饮的杯数是A.140 B.143C.152 D.1564.经过点(2,1)的直线l到A(1,1),B(3,5)两点的距离相等,则直线l的方程为A.2x-y-3=0 B.x=2C.2x-y-3=0或x=2 D.都不对5.下列选项中,与的值不相等的是()A B.cos18°cos42°﹣sin18°sin42°C. D.6.已知集合,,则()A. B.C. D.7.若a>0,且a≠1,x∈R,y∈R,且xy>0,则下列各式不恒成立的是()①logax2=2logax;②logax2=2loga|x|;③loga(xy)=logax+logay;④loga(xy)=loga|x|+loga|y|.A.②④ B.①③C.①④ D.②③8.已知是定义在上的偶函数,那么的最大值是()A.0 B.C. D.19.已知,则的值为()A. B.C. D.10.圆:与圆:的位置关系为()A.相交 B.相离C.外切 D.内切二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数为奇函数,则___________.12.已知,则的值是________,的值是________.13.若函数,则________14.我国著名的数学家华罗庚先生曾说:数缺形时少直观,形缺数时难人微;数形结合百般好,隔裂分家万事休,在数学学习和研究中,常用函数的图象来研究函数的性质.请写出一个在上单调递增且图象关于y轴对称的函数:________________15.若直线与互相垂直,则点到轴的距离为__________16.已知=,则=_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某中学有初中学生1800人,高中学生1200人,为了解全校学生本学期开学以来(60天)的课外阅读时间,学校采用分层抽样方法,从中抽取100名学生进行问卷调查.将样本中的“初中学生”和“高中学生”按学生的课外阅读时间(单位:时)各分为5组[0,10)、[10,20)、[20,30)、[30,40)、[40,50],得到频率分布直方图如图所示.(1)估计全校学生中课外阅读时间在[30,40)小时内的总人数是多少;(2)从课外阅读时间不足10小时的样本学生中随机抽取3人,求至少有2个初中生的概率;(3)国家规定,初中学生平均每人每天课外阅读时间不少于半个小时.若该校初中学生课外阅读时间小于国家标准,则学校应适当增加课外阅读时间,根据以上抽样调查数据,该校是否需要增加初中学生的课外阅读时间?并说明理由.18.已知的顶点、、,试求:(1)求边的中线所在直线方程;(2)求边上的高所在直线的方程.19.(1)已知,求;(2)已知,,,是第三象限角,求的值.20.已知函数,.(1)求函数的最小正周期和单调递减区间;(2)用括号中的正确条件填空.函数的图象可以用下面的方法得到:先将正弦曲线,向___________(左,右)平移___________(,)个单位长度;在纵坐标不变的条件下再把所得曲线上各点的横坐标变为原来的___________(,2)倍,再在横坐标不变的条件下把所得曲线上各点的纵坐标变为原来的___________(,2)倍,最后再把所得曲线向___________(上,下)平移___________(1,2)个单位长度.21.已知函数的定义域为,在上为增函数,且对任意的,都有(1)试判断的奇偶性;(2)若,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由题意可得:本题选择A选项.2、A【解题分析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值【题目详解】∵知角α的终边经过点P(4,-3),∴sinα,cosα,∴sinα+cosα故选:A3、B【解题分析】一个热饮杯数与当天气温之际的线性关系,其回归方程某天气温为时,即则该小卖部大约能卖出热饮的杯数是故选点睛:本题主要考查的知识点是线性回归方程的应用,即根据所给的或者是做出的线性回归方程,预报的值,这是一些解答题4、C【解题分析】当直线l的斜率不存在时,直线x=2显然满足题意;当直线l的斜率存在时,设直线l的斜率为k则直线l为y-1=kx-2,即由A到直线l的距离等于B到直线l的距离得:-kk化简得:-k=k-4或k=k-4(无解),解得k=2∴直线l的方程为2x-y-3=0综上,直线l的方程为2x-y-3=0或x=2故选C5、C【解题分析】先计算的值,再逐项计算各项的值,从而可得正确的选项.【题目详解】.对于A,因为,故A正确.对于B,,故B正确.对于C,,故C错误.对于D,,故D正确.故选:C.6、D【解题分析】利用对数函数与指数函数的性质化简集合,再根据集合交集的定义求解即可.【题目详解】因为,,所以,,则,故选:D.7、B【解题分析】对于①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②④根据运算性质可得均正确.【题目详解】∵xy>0,∴①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②logax2=2loga|x|,④loga(xy)=loga|x|+loga|y|,根据对数运算性质得两个都正确;故选:B.8、C【解题分析】∵f(x)=ax2+bx是定义在[a-1,2a]上偶函数,∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴,所以.故选C.9、B【解题分析】在所求分式的分子和分母中同时除以,结合两角差的正切公式可求得结果.【题目详解】.故选:B.10、A【解题分析】根据圆心距以及圆的半径确定正确选项.【题目详解】圆:的圆心为,半径为.圆:的圆心为,半径为.,,所以两圆相交.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据幂函数的定义,结合奇函数的定义进行求解即可.【题目详解】因为是幂函数,所以,或,当时,,因为,所以函数是偶函数,不符合题意;当时,,因为,所以函数是奇函数,符合题意,故答案为:12、①.②.【解题分析】将化为可得值,通过两角和的正切公式可得的值.【题目详解】因为,所以;,故答案为:,.13、0【解题分析】令x=1代入即可求出结果.【题目详解】令,则.【题目点拨】本题主要考查求函数的值,属于基础题型.14、(答案不唯一)【解题分析】利用函数的单调性及奇偶性即得.【题目详解】∵函数在上单调递增且图象关于y轴对称,∴函数可为.故答案为:.15、或.【解题分析】分析:由题意首先求得实数m的值,然后求解距离即可.详解:由直线垂直的充分必要条件可得:,即:,解得:,,当时点到轴的距离为0,当时点到轴的距离为5,综上可得:点到轴的距离为或.点睛:本题主要考查直线垂直的充分必要条件,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.16、##0.6【解题分析】寻找角之间的联系,利用诱导公式计算即可【题目详解】故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)720人(2)(3)需要增加,理由见解析【解题分析】(1)由分层抽样的特点可分别求得抽取的初中生、高中生人数,由频率分布直方图的性质可知初中生、高中生课外阅读时间在,小时内的频率,然后由频数样本容量频率可分别得初中生、高中生课外阅读时间在,小时内的样本学生数,最后将两者相加即可(2)记“从阅读时间不足10个小时的样本学生中随机抽取3人,至少有2个初中生”为事件,由频数样本容量频率组距频率可分别得初中生、高中生中,阅读时间不足10个小时的学生人数,然后用列举法表示出随机抽取3人的所有可能结果以及事件的结果,从而得(3)同一组中的数据用该组区间中点值作为代表来计算样本中的所有初中生平均每天阅读时间,并与30小时比较大小,若小于30小时,则需要增加,否则不需要增加【小问1详解】由分层抽样知,抽取的初中生有人,高中生有人初中生中,课外阅读时间在,小时内的频率为:,学生人数为人高中生中,课外阅读时间在,小时内的频率为:,学生人数约有人,全校学生中课外阅读时间在,小时内学生总人数为人【小问2详解】记“从阅读时间不足10个小时的样本学生中随机抽取3人,至少有2个初中生”为事件,初中生中,阅读时间不足10个小时的学生人数为人,高中生中,阅读时间不足10个小时的学生人数为人记这3名初中生为,,,这2名高中生为,,则从阅读时间不足10个小时的样本学生中随机抽取3人,所有可能结果共有10种,即,,,,,,,,,,而事件结果有7种,它们是:,,,,,,,至少抽到2名初中生的概率为【小问3详解】样本中的所有初中生平均每天阅读时间为:(小时),而(小时),,该校需要增加初中学生课外阅读时间18、(1);(2).【解题分析】(1)求出线段的中点坐标,利用两点式方程求出边上的中线所在的直线方程;(2)求出边所在直线的斜率,进而可以求出边上的高所在直线的斜率,利用点斜式求边上的高所在的直线方程【题目详解】解:(1)线段的中点坐标为所以边上的中线所在直线的方程是:,即;(2)由已知,则边上高的斜率是,边上的高所在直线方程是,即【题目点拨】本题考查直线的点斜式,两点式求直线的方程,属于基础题19、(1);(2).【解题分析】(1)根据诱导公式化简函数后代入求解即可;(2)根据同角三角函数的基本关系求出,利用两角差的余弦公式求解即可.【题目详解】(1)(2)由,,得又由,,得所以.20、(1),(2)左,,,2,上,1【解题分析】(1)根据降幂公式、二倍角的正弦公式及两角和的正弦公式化简,由正弦型三角函数的周期公式求周期,由正弦型函数的单调性求单调区间;(2)根据三角函数的图象变换过程求解即可.【小问1详解】,∴函数的最小正周期.由,得:,,∴的单调递减区间为,.【小问2详解】将的图象向左平移个单位,得到的图象,在纵坐标不变的条件下再把所得曲线上各点的横坐标变为原来的倍,得到的图象,再在横坐标不变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论