版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省丘北县第一中学2024届高一上数学期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,AB是⊙O直径,C是圆周上不同于A、B的任意一点,PA与平面ABC垂直,则四面体P_ABC的四个面中,直角三角形的个数有()A.4个 B.3个C.1个 D.2个2.函数的大致图象是A. B.C. D.3.函数与的图象交于两点,为坐标原点,则的面积为()A. B.C. D.4.下列四个集合中,是空集的是()A. B.C. D.5.长方体中,,,E为中点,则异面直线与CE所成角为()A. B.C. D.6.下列函数中最小正周期为的是A. B.C. D.7.已知是以为圆心的圆上的动点,且,则A. B.C. D.8.根据表格中的数据,可以判定函数的一个零点所在的区间为.A. B.C. D.9.由直线上的点向圆引切线,则切线长的最小值为A. B.C. D.10.定义在R上的偶函数满足:对任意的,有,且,则不等式的解集是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的图象如图所示,则函数的解析式为__________.12.已知平面向量,的夹角为,,则=______13.定义在R上的奇函数f(x)周期为2,则__________.14.大圆周长为的球的表面积为____________15.当时,函数取得最大值,则_______________16.给出下列四种说法:(1)函数与函数的定义域相同;(2)函数与的值域相同;(3)若函数式定义在R上的偶函数且在为减函数对于锐角则;(4)若函数且,则;其中正确说法序号是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数,其中,且.(1)求的定义域;(2)当时,函数图象上是否存在不同两点,使过这两点的直线平行于轴,并证明.18.年新冠肺炎仍在世界好多国家肆虐,并且出现了传染性更强的“德尔塔”变异毒株、拉姆达”变异毒株,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨,日常防护依然不能有丝毫放松.在日常防护中,口罩是必不可少的防护用品.已知某口罩的固定成本为万元,每生产万箱,需另投入成本万元,为年产量单位:万箱;已知通过市场分析,如若每万箱售价万元时,该厂年内生产的商品能全部售完.利润销售收入总成本(1)求年利润与万元关于年产量万箱的函数关系式;(2)求年产量为多少万箱时,该口罩生产厂家所获得年利润最大19.如图,△ABC中,,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C、M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体(1)求该几何体中间一个空心球的表面积的大小;(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积.20.在平面直角坐标系中,为坐标原点,已知两点、在轴的正半轴上,点在轴的正半轴上.若,()求向量,夹角的正切值()问点在什么位置时,向量,夹角最大?21.(1)计算:(2)已知,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】AB是圆O的直径,可得出三角形是直角三角形,由圆O所在的平面,根据线垂直于面性质得出三角形和三角形是直角三角形,同理可得三角形是直角三角形.【题目详解】∵AB是圆O的直径,∴∠ACB=,即,三角形是直角三角形.又∵圆O所在的平面,∴三角形和三角形是直角三角形,且BC在此平面中,∴平面,∴三角形是直角三角形.综上,三角形,三角形,三角形,三角形.直角三角形数量为4.故选:A.【题目点拨】考查线面垂直的判定定理和应用,知识点较为基础.需多理解.难度一般.2、D【解题分析】关于对称,且时,,故选D3、A【解题分析】令,解方程可求得,由此可求得两点坐标,得到关于点对称,由可求得结果.【题目详解】令,,解得:或(舍),,或,则或,不妨令,,则关于点对称,.故选:A.4、D【解题分析】对每个集合进行逐一检验,研究集合内的元素是否存在即可选出.【题目详解】选项A,;选项B,;选项C,;选项D,,方程无解,.选:D.5、C【解题分析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角【题目详解】解:长方体中,,,为中点,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,,设异面直线与所成角为,则,,异面直线与所成角为故选:【题目点拨】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题6、A【解题分析】利用周期公式对四个选项中周期进行求解【题目详解】A项中Tπ,B项中T,C项中T,D项中T,故选A【题目点拨】本题主要考查了三角函数周期公式的应用.对于带绝对值的函数解析式,可结合函数的图象来判断函数的周期7、A【解题分析】根据向量投影的几何意义得到结果即可.【题目详解】由A,B是以O为圆心的圆上的动点,且,根据向量的点积运算得到=||•||•cos,由向量的投影以及圆中垂径定理得到:||•cos即OB在AB方向上的投影,等于AB的一半,故得到=||•||•cos.故选A【题目点拨】本题考查向量的数量积公式的应用,以及向量投影的应用.平面向量数量积公式的应用主要有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).8、D【解题分析】函数,满足.由零点存在定理可知函数的一个零点所在的区间为.故选D.点睛:函数的零点问题,常根据零点存在性定理来判断,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,
这个c也就是方程f(x)=0的根.由此可判断根所在区间.9、B【解题分析】过圆心作直线的垂线,垂线与直线的交点向圆引切线,切线长最小【题目详解】圆心,半径,圆心到直线的距离则切线长的最小值【题目点拨】本题考查圆的切线长,考查数形结合思想,属于基础题10、C【解题分析】依题意可得在上单调递减,根据偶函数的性质可得在上单调递增,再根据,即可得到的大致图像,结合图像分类讨论,即可求出不等式的解集;【题目详解】解:因为函数满足对任意的,有,即在上单调递减,又是定义在R上的偶函数,所以在上单调递增,又,所以,函数的大致图像可如下所示:所以当时,当或时,则不等式等价于或,解得或,即原不等式的解集为;故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据最大值得,再由图像得周期,从而得,根据时,取得最大值,利用整体法代入列式求解,再结合的取值范围可得.【题目详解】根据图像的最大值可知,,由,可得,所以,再由得,,所以,因为,所以,故函数的解析式为.故答案为:.12、【解题分析】=代入各量进行求解即可.【题目详解】=,故答案.【题目点拨】本题考查了向量模的求解,可以通过先平方再开方即可,属于基础题.13、0【解题分析】以周期函数和奇函数的性质去求解即可.【题目详解】因为是R上的奇函数,所以,又周期为2,所以,又,所以,故,则对任意,故故答案为:014、【解题分析】依题意可知,故求得表面积为.15、【解题分析】利用三角恒等变换化简函数,根据正弦型函数的最值解得,利用诱导公式求解即可.【题目详解】解析:当时,取得最大值(其中),∴,即,∴故答案为:-3.16、(1)(3)【解题分析】(1)根据定义域直接判断;(2)分别求出值域即可判断;(3)利用偶函数图形的对称性得出在上的单调性及锐角,可以判断;(4)通过对数性质及对数运算即可判断.【题目详解】(1)函数与函数的定义域都为.所以(1)正确.(2)函数的值域为而的值域为,所以值域不同,故(2)错误.(3)函数在定义R上的偶函数且在为减函数,则函数在在为增函数,又为锐角,则,所以,故(3)正确.(4)函数且,则,即,得,故(4)错误.故答案为:(1)(3).【题目点拨】本题主要考查了指数函数、对数函数与幂函数的定义域与值域的求解,函数的奇偶性和单调性的判定,对数的运算,属于函数知识的综合应用,是中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当时,定义域为;当时,定义域为.(2)不存在,证明见解析.【解题分析】(1)首先根据题意得到,再分类讨论解不等式即可.(2)首先根据单调性定义得到函数在为增函数,从而得到函数图像上不存在不同两点,使过这两点的直线平行于轴.【题目详解】(1)由题知:,①当时,即,则,定义域为.②当时,即,则,定义域为.综上,当时,定义域为;当时,定义域为.(2)因为,所以函数的定义域为,任取,且,因为,所以,因为,所以,所以,即,所以,函数在为增函数,所以函数图象上不存在不同两点,使过这两点的直线平行于轴.18、(1)(2)万箱【解题分析】(1)分,两种情况,结合利润销售收入总成本公式,即可求解(2)根据已知条件,结合二次函数的性质,以及基本不等式,分类讨论求得最大值后比较可得【小问1详解】当时,,当时,,故关于的函数解析式为小问2详解】当时,,故当时,取得最大值,当时,,当且仅当,即时,取得最大值,综上所述,当时,取得最大值,故年产量为万箱时,该口罩生产厂家所获得年利润最大19、(1);(2)【解题分析】根据旋转体的轴截面图,利用平面几何知识求得球的半径与长,再利用面积公式与体积公式计算即可.【题目详解】解:(1)连接,则,设,在中,,;(2),∴圆锥球.【题目点拨】本题考查旋转体的表面积与体积的计算,球的表面积,圆锥的体积.20、(1)见解析;(2)见解析.【解题分析】分析:()设向量与轴的正半轴所成的角分别为,则向量所成的夹角为,由两角差的正切公式可得向量夹角的正切值为;()由(1)知,利用基本不等式即可的结果.详解:(1)由题意知,A的坐标为A(0,6),B的坐标为B(0,4),C(x,0),x>0设向量,与x轴的正半轴所成的角分别为α,β,则向量,所成的夹角为|β﹣α|=|α﹣β|,由三角函数的定义知:tanα=,tanβ=,由公式tan(α﹣β)=,得向量,的夹角的正切值等于tan(α﹣β)==,故所求向量,夹角的正切值为tan(α﹣β)=;(2)由(1)知tan(α﹣β)==≤=,所以tan(α﹣β)的最大值为时,夹角|α﹣β|的值也最大,当x=时,取得最大值成立,解得x=2,故点C在x的正半轴,距离原点为2,即点C的坐标为C(2,0)时,向量,夹角最大点睛:本题主要考查利用平面向量的夹角、两角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度学校教师学生国际交流与合作聘用合同3篇
- 二零二五年度信息技术产品软件售后服务合同书模板2篇
- 2025年度个人法律咨询委托书范本4篇
- 二零二五年度厨房电气设备安装与维护承包协议4篇
- 2025版实习合同模板:实习期间解约与补偿3篇
- 二零二五版旧机动车交易车辆售后配件供应合同3篇
- 2025版实习期员工劳动合同-实习期间合同解除与续签3篇
- 二零二五年度商业写字楼租赁合同样本
- 二零二五年度外语翻译公司兼职外教资源合作与管理合同
- 2025版投资框架协议模板下载与投资法律法规咨询3篇
- 反骚扰政策程序
- 运动技能学习与控制课件第十一章运动技能的练习
- 射频在疼痛治疗中的应用
- 四年级数学竖式计算100道文档
- “新零售”模式下生鲜电商的营销策略研究-以盒马鲜生为例
- 项痹病辨证施护
- 职业安全健康工作总结(2篇)
- 怀化市数字经济产业发展概况及未来投资可行性研究报告
- 07FD02 防空地下室电气设备安装
- 教师高中化学大单元教学培训心得体会
- 弹簧分离问题经典题目
评论
0/150
提交评论