上海市上海师范大学附属第二外国语学校2024届数学高一上期末学业水平测试模拟试题含解析_第1页
上海市上海师范大学附属第二外国语学校2024届数学高一上期末学业水平测试模拟试题含解析_第2页
上海市上海师范大学附属第二外国语学校2024届数学高一上期末学业水平测试模拟试题含解析_第3页
上海市上海师范大学附属第二外国语学校2024届数学高一上期末学业水平测试模拟试题含解析_第4页
上海市上海师范大学附属第二外国语学校2024届数学高一上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市上海师范大学附属第二外国语学校2024届数学高一上期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集为,则实数的取值范围是()A. B.C. D.2.已知,,则()A. B.C.或 D.3.已知,那么()A. B.C. D.4.已知函数对于任意两个不相等实数,都有成立,则实数的取值范围是()A. B.C. D.5.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.在空间直角坐标系中,点关于面对称的点的坐标是A. B.C. D.7.下列命题正确的是A.在空间中两条直线没有公共点,则这两条直线平行B.一条直线与一个平面可能有无数个公共点C.经过空间任意三点可以确定一个平面D.若一个平面上有三个点到另一个平面的距离相等,则这两个平面平行8.最小正周期为,且在区间上单调递增的函数是()A.y=sinx+cosx B.y=sinx-cosxC.y=sinxcosx D.y=9.若函数唯一的一个零点同时在区间、、、内,那么下列命题中正确的是A.函数在区间内有零点B.函数在区间或内有零点C.函数在区间内无零点D.函数在区间内无零点10.已知,则下列结论中正确的是()A.的最大值为 B.在区间上单调递增C.的图象关于点对称 D.的最小正周期为二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(且),若对,,都有.则实数a的取值范围是___________12.已知直线:,直线:,若,则__________13.若命题p是命题“”的充分不必要条件,则p可以是___________.(写出满足题意的一个即可)14.已知向量,,若,,,则的值为__________15.函数的定义域是______________.16.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bienao).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.(1)已知,,利用上述性质,求函数的单调区间和值域;(2)对于(1)中的函数和函数,若对任意,总存在,使得成立,求实数a的值.18.已知对数函数.(1)若函数,讨论函数的单调性;(2)对于(1)中的函数,若,不等式的解集非空,求实数的取值范围.19.已知函数f(x)=(1)判断函数f(x)的奇偶性;(2)判断并证明函数f(x)的单调性;(3)解不等式:f(x2-2x)+f(3x-2)<0;20.已知,函数.(1)若关于的不等式对任意恒成立,求实数的取值范围;(2)若关于的方程有两个不同实数根,求的取值范围.21.已知函数,.(1)求函数图形的对称轴;(2)若,不等式的解集为,,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】将不等式的解集为,转化为不等式的解集为R,分和两种情况讨论求解.【题目详解】因为不等式的解集为,所以不等式的解集为R,当,即时,成立;当,即时,,解得,综上:实数的取值范围是故选:C【题目点拨】本题主要考查一元二次不等式恒成立问题,还考查了分类讨论的思想和运算求解的能力,属于基础题.2、A【解题分析】利用两边平方求出,再根据函数值的符号得到,由可求得结果.【题目详解】,,,,,,所以,,.故选:A..3、B【解题分析】先利用指数函数单调性判断b,c和1大小关系,再判断a与1的关系,即得结果.【题目详解】因为在单调递增,,故,即,而,故.故选:B.4、B【解题分析】由题可得函数为减函数,根据单调性可求解参数的范围.【题目详解】由题可得,函数为单调递减函数,当时,若单减,则对称轴,得:,当时,若单减,则,在分界点处,应满足,即,综上:故选:B5、A【解题分析】先判断“”成立时,“”是否成立,反之,再看“”成立,能否推出“”,即可得答案.【题目详解】“”成立时,,故“”成立,即“”是“”的充分条件;“”成立时,或,此时推不出“”成立,故“”不是“”的必要条件,故选:A.6、C【解题分析】关于面对称的点为7、B【解题分析】根据平面的基本性质和空间中两直线的位置关系,逐一判定,即可得到答案【题目详解】由题意,对于A中,在空间中两条直线没有公共点,则这两条直线平行或异面,所以不正确;对于B中,当一条直线在平面内时,此时直线与平面可能有无数个公共点,所以是正确的;对于C中,经过空间不共线的三点可以确定一个平面,所以是错误的;对于D中,若一个平面上有三个点到另一个平面的距离相等,则这两个平面平行或相交,所以不正确,故选B【题目点拨】本题主要考查了平面的基本性质和空间中两直线的位置关系,其中解答中熟记平面的基本性质和空间中两直线的位置关系是解答的关键,着重考查了推理与论证能力,属于基础题8、B【解题分析】选项、先利用辅助角公式恒等变形,再利用正弦函数图像的性质判断周期和单调递增区间即可,选项先利用二倍角的正弦公式恒等变形,再利用正弦函数图像的性质判断周期和单调递增区间即可,选项直接利用正切函数图象的性质去判断即可.【题目详解】对于选项,,最小正周期为,单调递增区间为,即,该函数在上单调递增,则选项错误;对于选项,,最小正周期为,单调递增区间为,即,该函数在上为单调递增,则选项正确;对于选项,,最小正周期为,单调递增区间为,即,该函数在上为单调递增,则选项错误;对于选项,,最小正周期为,在为单调递增,则选项错误;故选:.9、D【解题分析】有题意可知,函数唯一的一个零点应在区间内,所以函数在区间内无零点考点:函数的零点个数问题10、B【解题分析】利用辅助角公式可得,根据正弦型函数最值、单调性、对称性和最小正周期的求法依次判断各个选项即可.【题目详解】;对于A,,A错误;对于B,当时,,由正弦函数在上单调递增可知:在上单调递增,B正确;对于C,当时,,则关于成轴对称,C错误;对于D,最小正周期,D错误.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由条件可知函数是增函数,可得分段函数两段都是增函数,且时,满足,由不等式组求解即可.【题目详解】因为对,且都有成立,所以函数在上单调递增.所以,解得.故答案为:12、1【解题分析】根据两直线垂直时,系数间满足的关系列方程即可求解.【题目详解】由题意可得:,解得:故答案为:【题目点拨】本题考查直线垂直的位置关系,考查理解辨析能力,属于基础题.13、,(答案不唯一)【解题分析】由充分条件和必要条件的定义求解即可【题目详解】因为当时,一定成立,而当时,可能,可能,所以是的充分不必要条件,故答案为:(答案不唯一)14、C【解题分析】分析:由,,,可得向量与平行,且,从而可得结果.详解:∵,,,∴向量与平行,且,∴.故答案为.点睛:本题主要考查共线向量的坐标运算,平面向量的数量积公式,意在考查对基本概念的理解与应用,属于中档题15、【解题分析】根据表达式有意义列条件,再求解条件得定义域.【题目详解】由题知,,整理得解得.所以函数定义域是.故答案为:.16、【解题分析】M﹣ABC四个面都为直角三角形,MA⊥平面ABC,MA=AB=BC=2,∴三角形的AC=2,从而可得MC=2,那么ABC内接球的半径r:可得(﹣r)2=r2+(2﹣)2解得:r=2-∵△ABC时等腰直角三角形,∴外接圆半径为AC=外接球的球心到平面ABC的距离为=1可得外接球的半径R=故得:外接球表面积为.由已知,设内切球半径为,,,内切球表面积为,外接球与内切球的表面积之和为故答案为:.点睛:本题考查了球与几何体的问题,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线,这样两条直线的交点,就是其外接球的球心.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)减区间为,增区间为;;(2).【解题分析】(1)设,,,则,,根据函数的性质,可得单调性,根据单调性可得值域;(2)根据单调性求出函数在上的值域,再根据的值域是的值域的子集列式可解得结果.【题目详解】(1),设,,,则,,由已知性质得,当,即时,单调递减,所以减区间为;当,即时,单调递增,所以增区间为;由,,,得的值域为;(2)因为为减函数,故函数在上的值域为.由题意,得的值域是的值域的子集,所以,所以.【题目点拨】本题考查了对勾函数的单调性,考查了利用函数的单调性求值域,考查了转化化归思想,属于中档题.18、(1)详见解析;(2).【解题分析】(1)由对数函数的定义,得到的值,进而得到函数的解析式,再根据复合函数的单调性,即可求解函数的单调性.(2)不等式的解集非空,得,利用函数的单调性,求得函数的最小值,即可求得实数的取值范围.【题目详解】(1)由题中可知:,解得:,所以函数的解析式,∵,∴,∴,即的定义域为,由于,令则:由对称轴可知,在单调递增,在单调递减;又因为在单调递增,故单调递增区间,单调递减区间为.(2)不等式的解集非空,所以,由(1)知,当时,函数单调递增区间,单调递减区间为,又,所以,所以,,所以实数的取值范围.19、(1)奇函数(2)单调增函数,证明见解析(3)【解题分析】(1)按照奇函数的定义判断即可;(2)按照单调性的定义判断证明即可;(3)由单调递增解不等式即可.【小问1详解】易知函数定义域R,所以函数为奇函数.【小问2详解】设任意x1,x2∈R且x1<x2,f(x1)-f(x2)==∵x1<x2,∴,∴f(x1)<f(x2),∴f(x)是在(-∞,+∞)上是单调增函数【小问3详解】∵f(x2-2x)+f(3x-2)<0,又∵f(x)是定义在R上的奇函数且在(-∞,+∞)上单调递增,∴f(x2-2x)<f(2-3x),∴x2-2x<2-3x,∴-2<x<1.不等式的解集是20、(1);(2).【解题分析】(1)利用函数的单调性去掉法则转化成不等式组恒成立,再借助均值不等式计算作答.(2)求出方程的二根,再结合对数函数的意义讨论即可计算作答.【小问1详解】依题意,,,,,而恒有,于是得,,,而,当且仅当,即时取“=”,于得,因此有,所以实数取值范围是.【小问2详解】依题意,,由,因此,,,解得,,因原方程有两个不同实数根,则,解得且,所以的取值范围是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论