版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省眉山车城中学2024届数学高一上期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象上各点的纵坐标不变,横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心是A. B.C. D.2.已知函数的图象关于直线对称,且,则的最小值为()A. B.C. D.3.如果命题“使得”是假命题,那么实数的取值范围是()A. B.C. D.4.设函数,则下列说法错误的是()A.当时,的值域为B.的单调递减区间为C.当时,函数有个零点D.当时,关于的方程有个实数解5.若,则()A B.C. D.6.如图,在棱长为1的正方体中,三棱锥的体积为()A. B.C. D.7.已知,,,则()A. B.C. D.8.若函数满足且的最小值为,则函数的单调递增区间为A. B.C. D.9.已知函数(,且)的图象恒过点P,若角的终边经过点P,则()A. B.C. D.10.集合,,则间的关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域是__________12.已知幂函数的图像过点,则___________.13.已知在平面直角坐标系中,角顶点在原点,始边与轴的正半轴重合,终边经过点,则___________.14.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是________.15.若函数过点,则的解集为___________.16.已知样本9,10,11,,的平均数是10,标准差是,则______,______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若在上是减函数,求的取值范围;(2)设,,若函数有且只有一个零点,求实数的取值范围.18.已知函数,.(1)求函数的值域;(2)若存在实数,使得在上有解,求实数的取值范围.19.计算下列各式的值:(Ⅰ)(Ⅱ)20.已知直线l1过点A(1,0),B(3,a-1),直线l2过点M(1,2),N(a+2,4)(1)若l1∥l2,求a的值;(2)若l1⊥l2,求a的值21.已知f(x)=log3x.(1)作出这个函数图象;(2)若f(a)<f(2),利用图象求a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由函数的图象上各点的纵坐标不变,横坐标伸长到原来的3倍得到,向右平移个单位得到,将代入得,所以函数的一个对称中心是,故选A2、D【解题分析】由辅助角公式可得,由函数关于直线对称,可得,可取.从而可得,由此结合,可得一个最大值一个最小值,从而可得结果.【题目详解】,,函数关于直线对称,,即,,故可取故,,即可得:,故可令,,,,即,,其中,,,故选D【题目点拨】本题主要考查辅助角公式的应用、三角函数的最值、三角函数的对称性,转化与划归思想的应用,属于难题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.3、B【解题分析】特称命题是假命题,则该命题的否定为全称命题且是真命题,然后根据即可求解.【题目详解】依题意,命题“使得”是假命题,则该命题的否定为“”,且是真命题;所以,.故选:B4、C【解题分析】利用二次函数和指数函数的值域可判断A选项;利用二次函数和指数函数的单调性可判断B选项;利用函数的零点个数求出的取值范围,可判断C选项;解方程可判断D选项.【题目详解】选项A:当时,当时,,当时,,当时,,综上,函数的值域为,故A正确;选项B:当时,的单调递减区间为,当时,函数为单调递增函数,无单调减区间,所以函数的单调递减为,故B正确;选项C:当时,令,解得或(舍去),当时,要使有解,即在上有解,只需求出的值域即可,当时,,且函数在上单调递减,所以此时的范围为,故C错误;选项D:当时,,即,即,解得或,当,时,,则,即,解得,所以当时,关于的方程有个实数解,故D正确.故选:C.5、C【解题分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果【题目详解】将式子进行齐次化处理得:故选:C【题目点拨】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论6、A【解题分析】用正方体的体积减去四个三棱锥的体积【题目详解】由,故选:A7、C【解题分析】因为所以选C考点:比较大小8、D【解题分析】分析:首先根据诱导公式和辅助角公式化简函数解析式,之后应用题的条件求得函数的最小正周期,求得的值,从而求得函数解析式,之后利用整体思维,借助于正弦型函数的解题思路,求得函数的单调增区间.详解:,根据题中条件满足且的最小值为,所以有,所以,从而有,令,整理得,从而求得函数的单调递增区间为,故选D.点睛:该题考查的是有关三角函数的综合问题,涉及到的知识点有诱导公式、辅助角公式、函数的周期以及正弦型函数的单调区间的求法,在结题的过程中,需要对各个知识点要熟记,解题方法要明确.9、A【解题分析】由题可得点,再利用三角函数的定义即求.【题目详解】令,则,所以函数(,且)的图象恒过点,又角的终边经过点,所以,故选:A.10、D【解题分析】解指数不等式和一元二次不等式得集合,再判断各选项【题目详解】由题意,或,所以,即故选:D【题目点拨】本题考查集合的运算与集合的关键,考查解一元二次不等式,指数不等式,掌握指数函数性质是解题关键二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】要使函数有意义,则,解得,函数的定义域是,故答案为.12、【解题分析】先设幂函数解析式,再将代入即可求出的解析式,进而求得.【题目详解】设,幂函数的图像过点,,,,故答案为:13、【解题分析】根据角的终边经过点,利用三角函数的定义求得,然后利用二倍角公式求解.【题目详解】因为角的终边经过点,所以,所以,所以,故答案为:14、【解题分析】正四棱柱的高是4,体积是16,则底面边长为2,底面正方形的对角线长度为,所以正四棱柱体对角线的长度为,四棱柱体对角线为外接球的直径,所以球的半径为,所以球的表面积为考点:正四棱柱外接球表面积15、【解题分析】由函数过点可求得参数a的值,进而解对数不等式即可解决.详解】由函数过点可得,,则,即,此时由可得即故答案为:16、①.20②.96【解题分析】先由平均数的公式列出x+y=20,然后根据方差的公式列方程,求出x和y的值即可求出xy的值.【题目详解】根据平均数及方差公式,可得:化简得:,,或则,故答案为:20;96【题目点拨】本题主要考查了平均数和方等概念,以及解方程组,属于容易题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)由题意结合函数单调性的定义得到关于a的表达式,结合指数函数的性质确定的取值范围即可;(2)利用换元法将原问题转化为二次方程根的分布问题,然后求解实数的取值范围即可.【题目详解】(1)由题设,若在上是减函数,则任取,,且,都有,即成立.∵.又在上是增函数,且,∴由,得,即,且.∴只须,解.由,,且,知,∴,即,∴.所以在上是减函数,实数的取值范围是.(2)由题知方程有且只有一个实数根,令,则关于的方程有且只有一个正根.若,则,不符合题意,舍去;若,则方程两根异号或有两个相等的正根.方程两根异号等价于解得;方程有两个相等的正根等价于解得;综上所述,实数的取值范围为.【题目点拨】本题主要考查函数的单调性,二次方程根的分布等知识,意在考查学生的转化能力和计算求解能力.18、(1)(2)【解题分析】(1)结合题意得Mx=log2x,0<x<2(2)由题知,进而换元得在上有解,再根据对勾函数求最值即可;【小问1详解】解:函数,因为,所以当时,,.当时,,.即Mx当时,;当时,.综上:值域为.【小问2详解】解:可以化为即:令,,所以,所以所以在上有解即在上有解令,则而当且仅当,即时取等号所以实数的取值范围是19、(Ⅰ);(Ⅱ).【解题分析】(1)根据对数运算法则化简求值(2)根据指数运算法则,化简求值试题解析:(Ⅰ)原式.(Ⅱ)原式.20、(1);(2).【解题分析】由两点式求出l1的斜率(1)再由两点求斜率的到l2的斜率,由斜率相等求得a的值;(2)分l1的斜率为0和不为0讨论,当l1的斜率为0时,由M,N的横坐标相等求a得值;不为0时由两直线的斜率乘积等于-1得答案【题目详解】(1),即,解得(2),即,解得.【题目点拨】本题考查了直线的一般式方程与两直线平行、垂直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沪科版八年级物理全一册《2.2声音的特性》同步测试题带答案
- 人教版一年级下册语文教案
- 新课标人教版初中七年级上册数学教案
- 考虑风险约束的资产配置策略实证研究
- 英语四级词汇
- 高一化学第一单元从实验学化学第二讲化学计量在实验中的应用练习题
- 2024高中地理第4章区域经济发展第1节第1课时东北地区农业发展的地理条件和农业布局精练含解析新人教版必修3
- 2024高中物理第二章匀变速直线运动的研究1实验:探究小车速度随时间变化的规律课后作业含解析新人教版必修1
- 2024高中语文第一课走进汉语的世界第1节美丽而奇妙的语言-认识汉语练习含解析新人教版选修语言文字应用
- 2024高中语文第四单元创造形象诗文有别自主赏析庖丁解牛学案新人教版选修中国古代诗歌散文欣赏
- 从教走向学:在课堂上落实核心素养
- 美世国际职位评估体系IPE3.0使用手册
- 2020电网检修工程预算定额第五册 通信工程
- 图像超分辨率增强技术
- 集装箱货运码头的火灾防范措施
- DB15T+3199-2023公路工程水泥混凝土质量声波层析成像法检测规程
- 高压电缆试验报告
- 七年级数学上册专题1.14数轴与绝对值综合问题大题专练(重难点培优)-【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典(原卷版)【人教版】
- 酸性氨基酸对caco
- 艺术导论PPT完整全套教学课件
- 2009-2022历年新疆生产建设兵团事业单位考试A岗真题附答案解析2023上岸甄选资料
评论
0/150
提交评论