2024届广西壮族自治区贵港市港南中学高一数学第一学期期末检测模拟试题含解析_第1页
2024届广西壮族自治区贵港市港南中学高一数学第一学期期末检测模拟试题含解析_第2页
2024届广西壮族自治区贵港市港南中学高一数学第一学期期末检测模拟试题含解析_第3页
2024届广西壮族自治区贵港市港南中学高一数学第一学期期末检测模拟试题含解析_第4页
2024届广西壮族自治区贵港市港南中学高一数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西壮族自治区贵港市港南中学高一数学第一学期期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数是奇函数,则的值为()A.1 B.C.0 D.2.函数和都是减函数的区间是A. B.C. D.3.已知定义域为的函数满足,且,若,则()A. B.C. D.4.函数(且)的图像必经过点()A. B.C. D.5.要想得到函数的图像,只需将函数的图象A.向左平移个单位,再向上平移1个单位 B.向右平移个单位,再向上平移1个单位C.向左平移个单位,再向下平移1个单位 D.向右平移个单位,再向上平移1个单位6.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸(单位:),可得这个几何体的体积(单位:cm3)是A.4 B.5C.6 D.77.下列函数是偶函数且值域为的是()①;②;③;④A.①② B.②③C.①④ D.③④8.函数的定义域为,且为奇函数,当时,,则函数的所有零点之和是()A.2 B.4C.6 D.89.四个变量y1,y2,y3,y4,随变量x变化的数据如下表:x124681012y116295581107133159y21982735656759055531447y3186421651210001728y42.0003.7105.4196.4197.1297.6798.129其中关于x近似呈指数增长的变量是()A. B.C. D.10.若,且则与的夹角为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数(其中,,)的图象如图所示,则函数的解析式为__________12.已知集合A={﹣1,2,3},f:x→2x是集合A到集合B的映射,则写出一个满足条件的集合B_____13.已知扇形周长为4,圆心角为,则扇形面积为__________.14.设是定义在上的函数,若存在两个不等实数,使得,则称函数具有性质,那么下列函数:①;②;③;具有性质的函数的个数为____________15.已知函数,若对恒成立,则实数的取值范围是___________.16.在中,,BC边上的高等于,则______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,动物园要建造一面靠墙的两间相同的矩形熊猫居室,如果可供建造围墙的材料总长是用宽(单位)表示所建造的每间熊猫居室的面积(单位);怎么设计才能使所建造的每间熊猫居室面积最大?并求出每间熊猫居室的最大面积?18.已知a,b为正实数,且.(1)求a2+b2的最小值;(2)若,求ab的值19.(1)计算:;(2)已知,,求,的值.20.设函数的定义域为,函数的定义域为.(1)求;(2)若,且函数在上递减,求的取值范围.21.已知二次函数满足条件和,(1)求;(2)求在区间()上的最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据奇函数的定义可得,代入表达式利用对数的运算即可求解.【题目详解】函数是奇函数,则,即,从而可得,解得.当时,,即定义域为,所以时,是奇函数故选:D【题目点拨】本题考查了函数奇偶性的应用,需掌握函数奇偶性的定义,同时本题也考查了对数的运算,属于基础题.2、A【解题分析】y=sinx是减函数的区间是,y=cosx是减函数的区间是[2k,2k+],,∴同时成立的区间为故选A.3、A【解题分析】根据,,得到求解.【题目详解】因为,,所以,所以,所以,所以,,故选:A4、D【解题分析】根据指数函数的性质,求出其过的定点【题目详解】解:∵(且),且令得,则函数图象必过点,故选:D5、B【解题分析】,因此把函数的图象向右平移个单位,再向上平移1个单位可得的图象,故选B.6、A【解题分析】如图三视图复原的几何体是底面为直角梯形,是直角梯形,,一条侧棱垂直直角梯形的直角顶点的四棱锥,即平面所以几何体的体积为:故选A【题目点拨】本题考查几何体的三视图,几何体的表面积的求法,准确判断几何体的形状是解题的关键7、C【解题分析】根据奇偶性的定义依次判断,并求函数的值域即可得答案.【题目详解】对于①,是偶函数,且值域为;对于②,是奇函数,值域为;对于③,是偶函数,值域为;对于④,偶函数,且值域为,所以符合题意的有①④故选:C.8、B【解题分析】根据题意可知图象关于点中心对称,由的解析式求出时的零点,根据对称性即可求出时的零点,即可求解.【题目详解】因为为奇函数,所以函数的图象关于点中心对称,将的图象向右平移个单位可得的图象,所以图象关于点中心对称,当时,,令解得:或,因为函数图象关于点中心对称,则当时,有两解,为或,所以函数的所有零点之和是,故选:B第II卷(非选择题9、B【解题分析】根据表格中的数据,四个变量都是越来越大,但是增长速度不同,其中变量的增长速度最快,【题目详解】根据表格中的数据,四个变量都是越来越大,但是增长速度不同,其中变量的增长速度最快,符合指数函数的增长特点.故选:B10、C【解题分析】因为,设与的夹角为,,则,故选C考点:数量积表示两个向量的夹角二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】如图可知函数的最大值,当时,代入,,当时,代入,,解得则函数的解析式为12、{﹣2,4,6}【解题分析】先利用应关系f:x→2x,根据原像求像的值,像的值即是满足条件的集合B中元素【题目详解】∵对应关系为f:x→2x,={-1,2,3},∴2x=-2,4,6共3个值,则-2,4,6这三个元素一定在集合B中,根据映射的定义集合B中还可能有其他元素,我们可以取其中一个满足条件的集合B,不妨取集合B={-2,4,6}.故答案为:{-2,4,6}【题目点拨】本题考查映射的概念,像与原像的定义,集合A中所有元素的集合即为集合B中元素集合.13、1【解题分析】利用扇形的弧长公式求半径,再由扇形面积公式求其面积即可.【题目详解】设扇形的半径为,则,可得,而扇形的弧长为,所以扇形面积为.故答案为:1.14、【解题分析】根据题意,找出存在的点,如果找不出则需证明:不存在,,使得【题目详解】①因为函数是奇函数,可找关于原点对称的点,比如,存在;②假设存在不相等,,使得,即,得,矛盾,故不存在;③函数为偶函数,,令,,则,存在故答案为:【题目点拨】关键点点睛:证明存在性命题,只需找到满足条件的特殊值即可,反之需要证明不存在,一般考虑反证法,先假设存在,推出矛盾即可,属于中档题.15、【解题分析】需要满足两个不等式和对都成立.【题目详解】和对都成立,令,得在上恒成立,当时,只需即可,解得;当时,只需即可,解得(舍);综上故答案为:16、.【解题分析】设边上的高为,则,求出,.再利用余弦定理求出.【题目详解】设边上的高为,则,所以,由余弦定理,知故答案为【题目点拨】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)使每间熊猫居室的宽为,每间居室的长为15m时所建造的每间熊猫居室面积最大;每间熊猫居室的最大面积为150【解题分析】(1)根据周长求出居室的长,再根据矩形面积公式得函数关系式,最后根据实际意义确定定义域(2)根据对称轴与定义区间位置关系确定最值取法:在对称轴处取最大值试题解析:解:(1)设熊猫居室的宽为(单位),由于可供建造围墙的材料总长是,则每间熊猫居室的长为(单位m)所以每间熊猫居室的面积又得(2)二次函数图象开口向下,对称轴且,当时,,所以使每间熊猫居室的宽为,每间居室的长为15m时所建造的每间熊猫居室面积最大;每间熊猫居室的最大面积为150点睛:在建立二次函数模型解决实际问题中的最优问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.解决函数应用问题时,最后还要还原到实际问题18、(1)1;(2)1.【解题分析】(1)根据和可得结果;(2)由得,将化为解得结果即可.【题目详解】(1)因为a,b为正实数,且,所以,即ab≥(当且仅当a=b时等号成立)因为(当且仅当a=b时等号成立),所以a2+b2的最小值为1.(2)因为,所以,因为,所以,即,所以(ab)2-2ab+1≤0,(ab-1)2≤0,因为,所以ab=1.【题目点拨】本题考查了利用基本不等式求最值,属于基础题.19、(1);(2)【解题分析】(1)根据指数运算与对数运算的法则计算即可;(2)先根据指对数运算得,进而,再将其转化为求解即可.【题目详解】解:(1)原式==(2)∴,,化为:,,解得∴20、(1);(2).【解题分析】(1)先求出集合,,然后由补集和并集的定义求解即可;(2)先利用交集求出集合,然后利用二次函数的单调性分析求解即可【题目详解】解:(1)由得,∴,由得,∴,∴,∴.(2)∵,,∴.由在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论