版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市东丽区民族中学2024届数学高一上期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列说法不正确的是()A.奇函数的图象关于原点对称,但不一定过原点 B.偶函数的图象关于y轴对称,但不一定和y轴相交C.若偶函数的图象与x轴有且仅有两交点,且横坐标分别为,则 D.若奇函数的图象与y轴相交,交点不一定是原点2.已知,则三者的大小关系是A. B.C. D.3.函数的零点的个数为A. B.C. D.4.设全集,集合,则等于A. B.C. D.5.若不等式(>0,且≠1)在[1,2]上恒成立,则的取值范围是A.(1,2) B.(2,)C.(0,1)(2,) D.(0,)6.某学校在数学联赛的成绩中抽取100名学生的笔试成绩,统计后得到如图所示的分布直方图,这100名学生成绩的中位数估值为A.80 B.82C.82.5 D.847.设函数对任意的,都有,,且当时,,则()A. B.C. D.8.“”是“”的条件A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件9.下列函数中,图象关于坐标原点对称的是()A.y=x B.C.y=x D.10.令,,,则三个数、、的大小顺序是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.圆关于直线的对称圆的标准方程为___________.12.正三棱锥P﹣ABC的底面边长为1,E,F,G,H分别是PA,AC,BC,PB的中点,四边形EFGH的面积为S,则S的取值范围是__13.若,则的终边所在的象限为______14.函数的定义域为________.15.某次学科测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.则参加测试的总人数为______,分数在之间的人数为______.16.已知函数,则的单调递增区间是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角在第二象限,且(1)求的值;(2)若,且为第一象限角,求的值18.已知且,函数.(1)求的定义域;(2)判断的奇偶性,并用定义证明;(3)求使的取值范围.19.如图,在三棱锥中,平面平面为等边三角形,且分别为的中点(1)求证:平面;(2)求证:平面平面;20.2021年秋季学期,某省在高一推进新教材,为此该省某市教育部门组织该市全体高中教师在暑假期间进行相关学科培训,培训后举行测试(满分100分),从该市参加测试的数学老师中抽取了100名老师并统计他们的测试分数,将成绩分成五组,第一组[65,70),第二组[70,75),第三组[75,80),第四组[80,85),第五组[85,90],得到如图所示的频率分布直方图(1)求a的值以及这100人中测试成绩在[80,85)的人数;(2)估计全市老师测试成绩的平均数(同组中的每个数据都用该组区间中点值代替)和第50%分数位(保留两位小数);(3)若要从第三、四、五组老师中用分层抽样的方法抽取6人作学习心得交流分享,并在这6人中再抽取2人担当分享交流活动的主持人,求第四组至少有1名老师被抽到的概率21.已知函数当时,判断在上的单调性并用定义证明;若对任意,不等式恒成立,求实数m的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】对于AB,举例判断,对于CD根据函数奇偶性和对称性的关系分析判断即可【题目详解】对于A,是奇函数,其图象关于原点对称,但不过原点,所以A正确,对于B,是偶函数,其图象关于轴对称,但与轴不相交,所以B正确,对于C,若偶函数的图象与x轴有且仅有两交点,且横坐标分别为,则两个交点关于轴对称,所以,所以C正确,对于D,若奇函数与y轴有交点,则,故,所以函数必过原点,所以D错误,故选:D2、C【解题分析】a=log30.2<0,b=30.2>1,c=0.30.2∈(0,1),∴a<c<b故选C点睛:这个题目考查的是比较指数和对数值的大小;一般比较大小的题目,常用的方法有:先估算一下每个数值,看能否根据估算值直接比大小;估算不行的话再找中间量,经常和0,1,-1比较;还可以构造函数,利用函数的单调性来比较大小.3、B【解题分析】略【题目详解】因为函数单调递增,且x=3,y>0,x=1,y<0,所以零点个数为14、A【解题分析】,=5、B【解题分析】分类讨论:①若a>1,由题意可得:在区间上恒成立,即在区间上恒成立,则,结合反比例函数的单调性可知当时,,此时;②若0<a<1,由题意可得:在区间上恒成立,即,,函数,结合二次函数的性质可知,当时,取得最大值1,此时要求,与矛盾.综上可得:的取值范围是(2,).本题选择B选项.点睛:在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件6、B【解题分析】中位数的左边和右边的直方图的面积相等,由此可以估计中位数的值,,中位数为,故选B.7、A【解题分析】由和可得函数的周期,再利用周期可得答案.【题目详解】由得,所以,即,所以的周期为4,,由得,所以故选:A.8、A【解题分析】若,则;若,则,推不出.所以“”是“”成立的充分不必要条件.故选A考点:充分必要条件9、B【解题分析】根据图象关于坐标原点对称的函数是奇函数,结合奇函数的性质进行判断即可.【题目详解】因为图象关于坐标原点对称的函数是奇函数,所以有:A:函数y=xB:设f(x)=x3,因为C:设g(x)=x,因为g(-x)=D:因为当x=0时,y=1,所以该函数的图象不过原点,因此不是奇函数,不符合题意,故选:B10、D【解题分析】由已知得,,,判断可得选项.【题目详解】解:由指数函数和对数函数的图象可知:,,,所以,故选:D【题目点拨】本题考查了对数式、指数式的大小比较,比较大小的常用方法为同底的对数式和指数式利用其单调性进行比较,也可以借助于中间值0和1进行比较,考查了运算求解能力与逻辑推理能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】两圆关于直线对称,则两圆的圆心关于直线对称,且两圆半径相同,由此求解即可【题目详解】由题,圆的标准方程为,即圆心,半径为,设对称圆的圆心为,则,解得,所以对称圆的方程为,故答案为:【题目点拨】本题考查圆关于直线对称的圆,属于基础题12、(,+∞)【解题分析】由正三棱锥可得四边形EFGH为矩形,并可得其边长与三棱锥棱长关系,从而可得面积S的范围.【题目详解】∵棱锥P﹣ABC为底面边长为1的正三棱锥∴AB⊥PC又∵E,F,G,H,分别是PA,AC,BC,PD的中点,∴EH//FG//AB且EH=FGAB,EF//HG//PC且EF=HGPC则四边形EFGH为一个矩形又∵PC,∴EF,∴S=EFEH,∴四边形EFGH的面积S的取值范围是(,+∞),故答案为:(,+∞)三、13、第一或第三象限【解题分析】将表达式化简,,二者相等,只需满足与同号即可,从而判断角所在的象限.【题目详解】由,,若,只需满足,即与同号,因此的终边在第一或第三象限.故答案为:第一或第三象限.14、【解题分析】根据开偶次方被开方数非负数,结合对数函数的定义域得到不等式组,解出即可.【题目详解】函数定义域满足:解得所以函数的定义域为故答案为:【题目点拨】本题考查了求函数的定义域问题,考查对数函数的性质,属于基础题.15、①.25②.4【解题分析】根据条件所给的茎叶图看出分数在[50,60)之间的频数,由频率分布直方图看出分数在[50,60)之间的频率和[90,100)之间的频率一样,继而得到参加测试的总人数及分数在[80,90)之间的人数.【题目详解】成绩在[50,60)内的频数为2,由频率分布直方图可以看出,成绩在[90,100]内同样有2人,由,解得n=25,成绩在[80,90)之间的人数为25-(2+7+10+2)=4人,所以参加测试人数n=25,分数在[80,90)的人数为4人.故答案为:25;4【题目点拨】本题主要考查茎叶图、频率分布直方图,样本的频率分布估计总体的分布,属于容易题.16、【解题分析】函数是由和复合而成,分别判断两个函数的单调性,根据复合函数的单调性同增异减即可求解.【题目详解】函数是由和复合而成,因为为单调递增函数,对称轴为,开口向上,所以在上单调递减,在上单调递增,所以在上单调递减,在上单调递增,所以的单调递增区间为,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)利用同角三角函数关系可求解得,利用诱导公式化简原式可得原式,代入即得解;(2)利用同角三角函数关系可得,又,利用两角差的正弦公式,即得解【小问1详解】因为,且在第二象限,故,所以,原式【小问2详解】由题意有故,18、(1);(2)函数是偶函数,详见解析;(3)当时,;当时,或.【解题分析】(1)根据对数的真数为正数列式可解得结果;(2)函数是偶函数,根据偶函数的定义证明即可;(3)不等式化为后,分类讨论底数,根据对数函数的单调性可解得结果.【小问1详解】要使函数数有意义,则必有,解得,所以函数的定义域是;【小问2详解】函数是偶函数,证明如下:∵,,又∴函数是偶函数;【小问3详解】使,即当时,有,,当时,有,解得或.综上所述:当时,;当时,或.19、(1)证明见解析;(2)证明见解析.【解题分析】(1)因为分别为的中点,所以,由线面平行的判定定理,即可得到平面;(2)因为为的中点,得到,利用面面垂直的性质定理可证得平面,由面面垂直的判定定理,即可得到平面平面【题目详解】(1)因为、分别为、的中点,所以.又因为平面,所以平面;(2)因为,为的中点,所以,又因为平面平面,平面平面,且平面,所以平面,平面,平面平面.【题目点拨】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直20、(1);20;(2)分,76.67分(3)【解题分析】(1)根据频率之和为1,可求得a的值,根据频数的计算可求得测试成绩在[80,85)的人数;(2)根据频率分布直方图可计算中位数,即可求得第50%分数位;(3)列举出所有可能的抽法,再列出第四组至少有1名老师被抽到可能情况,根据古典概型的概率公式求得答案.【小问1详解】由题意得:,解得;这100人中测试成绩在[80,85)的人数为(人);【小问2详解】平均数为:(分),设中位数为m,且,则,解得,故第50%分数位76.67分;【小问3详解】第三组频率为,第四组频率为,第五组频率为,故从第三、四、五组老师中用分层抽样的方法抽取6人作学习心得交流分享,三组人数为3人,2人和1人,记第三组抽取人为,第四组抽取的人为,第五组抽取的人为,则抽取2人的所有情况如下:共15种,其中第四组至少有1名老师被抽到的抽法有共9种,故第四组至少有1名老师被抽到的概率为.21、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 苏教版数学一年级下册教案
- 2024年游艇码头物业委托管理及船舶维护服务协议3篇
- 2024年甲乙双方关于物联网技术研发与推广的合同
- 商场工作计划模板七篇
- 减温减压阀行业行业发展趋势及投资战略研究分析报告
- 简短的个人述职报告
- 2022新学期开学感悟(10篇)
- 以家为话题作文15篇
- 幼儿园大班体育教案教学
- 土木工程认知实习报告4篇
- 山东2022青岛农商银行莱西支行行长社会招聘上岸提分题库3套【500题带答案含详解】
- 2023-2024学年江苏省启东市小学语文五年级上册期末通关考试题
- 设计中重点、难点及关键技术问题把握控制及相应措施把握难点
- YY/T 0698.2-2009最终灭菌医疗器械包装材料第2部分:灭菌包裹材料要求和试验方法
- GB/T 1535-2017大豆油
- 《乡镇环境治理研究开题报告文献综述11000字》
- 植物细胞信号转导课件
- 名著黑布林阅读Treasure Island《金银岛》练习题(含答案)
- 第二章-地方理论-《旅游目的地管理》课件
- 河北省唐山市药品零售药店企业药房名单目录
- 水上运输大型构件安全交底
评论
0/150
提交评论