




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省西安市第二十五中学数学高一上期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,,则()A. B.C. D.2.如图,在四面体ABCD中,E,F分别是AC与BD的中点,若CD=2AB=4,EF⊥BA,则EF与CD所成的角为()A.90° B.45°C.60° D.30°3.已知函数且,则实数的范围()A. B.C. D.4.当时,的最大值为()A. B.C. D.5.设,则与终边相同的角的集合为A. B.C. D.6.已知点的坐标分别为,直线相交于点,且直线的斜率与直线的斜率的差是1,则点的轨迹方程为A. B.C. D.7.将函数的图象向左平移个单位长度,再向上平移1个单位长度,得到的图象,若,且,则的最大值为A. B.C. D.8.若,,,则、、大小关系为()A. B.C. D.9.以下元素的全体不能够构成集合的是A.中国古代四大发明 B.周长为的三角形C.方程的实数解 D.地球上的小河流10.设,,,则a,b,c的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为________12.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.13.将函数y=sinx的图象上的所有点向右平移个单位长度,所得图象的函数解析式为_________.14.计算的值为__________15.已知且,且,如果无论在给定的范围内取任何值时,函数与函数总经过同一个定点,则实数__________16.在中,已知是x的方程的两个实根,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量为不共线向量,若向量与共线求k的值18.若函数f(x)满足f(logax)=·(x-)(其中a>0且a≠1).(1)求函数f(x)的解析式,并判断其奇偶性和单调性;(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围19.已知函数(1)根据函数单调性的定义,证明在区间上单调递减,在区间上单调递增;(2)令,若对,,都有成立,求实数取值范围20.(1)计算:;(2)计算:21.已知定义域为的函数是奇函数.(1)求的值;(2)用函数单调性的定义证明在上是减函数.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】解一元二次不等式求出集合A,利用交集定义和运算计算即可【题目详解】由题意可得,则故选:D2、D【解题分析】设G为AD的中点,连接GF,GE,由三角形中位线定理可得,,则∠GFE即为EF与CD所成的角,结合AB=2,CD=4,EF⊥AB,在△GEF中,利用三角函数即可得到答案.【题目详解】解:设G为AD的中点,连接GF,GE则GF,GE分别为△ABD,△ACD的中线.∴,且,,且,则EF与CD所成角的度数等于EF与GE所成角的度数又EF⊥AB,∴EF⊥GF则△GEF为直角三角形,GF=1,GE=2,∠GFE=90°∴在直角△GEF中,∴∠GEF=30°故选:D.3、B【解题分析】根据解析式得,进而得令,得为奇函数,,进而结合函数单调性求解即可.【题目详解】函数,定义域为,满足,所以,令,所以,所以奇函数,,函数在均为增函数,所以在为增函数,所以在为增函数,因为为奇函数,所以在为增函数,所以,解得.故选:B.4、B【解题分析】利用基本不等式直接求解.【题目详解】,,又,当且仅当,即时等号成立,所以的最大值为故选:B5、B【解题分析】由终边相同的角的概念,可直接得出结果.【题目详解】因为,所以与终边相同的角为.故选B【题目点拨】本题主要考查终边相同的角,熟记概念即可得出结果,属于基础题型.6、B【解题分析】设,直线的斜率为,直线的斜率为.有直线的斜率与直线的斜率的差是1,所以.通分得:,整理得:.故选B.点睛:求轨迹方程的常用方法:(1)直接法:直接利用条件建立x,y之间的关系F(x,y)=0(2)待定系数法:已知所求曲线的类型,求曲线方程(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程(4)代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程7、A【解题分析】分析:利用三角函数的图象变换,可得,由可得,取,取即可得结果.详解:的图象向左平移个单位长度,再向上平移1个单位长度,得到,,且,,,因为,所以时,取为最小值;时,取为最大值最大值为,故选A.点睛:本题主要考查三角函数图象的变换以及三角函数的性质,属于中档题.能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.8、B【解题分析】由指数函数、对数函数、正弦函数的性质把已知数与0和1比较后可得【题目详解】,,,所以故选:B【题目点拨】关键点点睛:本题考查实数的大小比较,对于幂、对数、三角函数值的大小比较,如果能应用相应函数单调性的应该利用单调性比较,如果不能转化,或者是不同类型的的数,可以结合函数的性质与特殊值如0或1等比较后可得结论9、D【解题分析】地球上的小河流不确定,因此不能够构成集合,选D.10、A【解题分析】根据指数函数和对数函数的单调性得出的范围,然后即可得出的大小关系.【题目详解】由题意知,,即,,即,,又,即,∴故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据偶次方根被开方数为非负数、对数真数大于零列不等式组,解不等式组求得函数的定义域.【题目详解】依题意,解得,故函数的定义域为.故答案为.【题目点拨】本小题主要考查具体函数定义域的求法,属于基础题.12、12【解题分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有人,列方程求解即可.【题目详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有人,则.故答案为:12.13、【解题分析】利用相位变换直接求得.【题目详解】按照相位变换,把函数y=sinx的图象上的所有点向右平移个单位长度,得到.故答案为:.14、【解题分析】.15、3【解题分析】因为函数与函数总经过同一个定点,函数的图象经过定点,所以函数总也经过,所以,,,故答案为.16、##【解题分析】根据根与系数关系可得,,再由三角形内角和的性质及和角正切公式求,即可得其大小.【题目详解】由题设,,,又,且,∴.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、或【解题分析】由与共线存在实数使,再根据平面向量的基本定理构造一个关于的方程,解方程即可得到k的值.【题目详解】,或【题目点拨】本题主要考查的是平面向量的基本定理,与共线存在实数使是判定两个向量共线最常用的方法,是基础题.18、(1)见解析.(2)[2-,1)∪(1,2+]【解题分析】试题分析:(1)利用换元法求函数解析式,注意换元时元的范围,再根据奇偶性定义判断函数奇偶性,最后根据复合函数单调性性质判断函数单调性(2)不等式恒成立问题一般转化为对应函数最值问题:即f(x)最大值小于4,根据函数单调性确定函数最大值,自在解不等式可得a的取值范围试题解析:(1)令logax=t(t∈R),则x=at,∴f(t)=(at-a-t)∴f(x)=(ax-a-x)(x∈R)∵f(-x)=(a-x-ax)=-(ax-a-x)=-f(x),∴f(x)为奇函数当a>1时,y=ax为增函数,y=-a-x为增函数,且>0,∴f(x)为增函数当0<a<1时,y=ax为减函数,y=-a-x为减函数,且<0,∴f(x)为增函数.∴f(x)在R上为增函数(2)∵f(x)是R上的增函数,∴y=f(x)-4也是R上的增函数由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒为负数,只需f(2)-4≤0,即(a2-a-2)≤4.∴()≤4,∴a2+1≤4a,∴a2-4a+1≤0,∴2-≤a≤2+.又a≠1,∴a的取值范围为[2-,1)∪(1,2+]点睛:不等式有解是含参数的不等式存在性问题时,只要求存在满足条件的即可;不等式的解集为R是指不等式的恒成立,而不等式的解集的对立面(如的解集是空集,则恒成立))也是不等式的恒成立问题,此两类问题都可转化为最值问题,即恒成立⇔,恒成立⇔.19、(1)证明见解析(2)【解题分析】(1)由单调性定义证明;(2)换元,设,,由(1)求得的范围,然后由二次函数性质求得最大值和最小值,由最大值减去最小值不大于可得的范围【小问1详解】证明:设,,且,则,当时,∴,,∴,∴,即,∴函数在上单调递减当时,∴,,∴,∴,即,∴函数在上单调递增综上,函数在上单调递减,在上单调递增【小问2详解】解:由题意知,令,,由(1)可知函数在上单调递减,在上单调递增,∴,∵函数的对称轴方程为,∴函数在上单调递减,当时,取得最大值,,当时,取得最小值,,所以,,又∵对,,都有恒成立,∴,即,解得,又∵,∴k的取值范围是20、(1);(2).【解题分析】(1)由根式化为分数指数幂,再由幂的运算法则计算(2)利用对数的换底公式和运算法则计算【题目详解】(1)原式=8+0.1+1=9.1(2)原式==1+=1+2=321、(1)(2)详见解析【解题分析】(1)既可以利用奇函数的定义求得的值,也可以利用在处有意义的奇函数的性质求,但要注意证明该值使得函数是奇函数.(2)按照函数单调性定义法证明步骤证明即可.【题目详解】解:(1)解法一:因为函数是定义在上的奇函数,所以,即,整理得,所以,所以.解法二:因为函数是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Excel函数知识课件
- dpmas基本知识教学课件
- 简约几何培训课件
- 职场妈妈的时间管理
- 人教版数学六年级下册第四单元比例应用题训练(含答案)
- 人教版数学六年级下册《圆、圆柱的认识、圆柱的表面积》(试题)
- 2025年广元市重点中学高三下学期生物试题(月考)独立作业1含解析
- 沈阳城市建设学院《团体操编排》2023-2024学年第二学期期末试卷
- 省际名校2024-2025学年高三寒假考试(一)化学试题含解析
- 湖南交通职业技术学院《机械设计基础A2》2023-2024学年第二学期期末试卷
- 质量目标管理表
- 机械原理课程设计-抽油机机械系统设计说明书
- DBJ41T 074-2013 高压细水雾灭火系统设计、施工及验收规范
- Q∕SY 05262-2019 机械清管器技术条件
- 《出纳员登记日记账》 课件
- DB32∕T 2518-2013 农田径流氮磷生态拦截沟渠塘构建技术规范
- DBJ51 014-2021 四川省建筑地基基础检测技术规程
- 环境监测课件:第3章 空气和废气监测2
- 航空航天概论(课堂PPT)
- 小学校班子运行情况
- 交通运输企业安全生产费用提取和使用管理制度
评论
0/150
提交评论