四川省任隆中学2024届高一上数学期末质量跟踪监视模拟试题含解析_第1页
四川省任隆中学2024届高一上数学期末质量跟踪监视模拟试题含解析_第2页
四川省任隆中学2024届高一上数学期末质量跟踪监视模拟试题含解析_第3页
四川省任隆中学2024届高一上数学期末质量跟踪监视模拟试题含解析_第4页
四川省任隆中学2024届高一上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省任隆中学2024届高一上数学期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数,则当时,的取值为A.-4 B.4C.-10 D.102.已知函数,若在上单调递增,则实数的取值范围为()A. B.C. D.3.某组合体的三视图如下,则它的体积是A. B.C. D.4.给定函数:①;②;③;④,其中在区间上单调递减函数序号是()A.①② B.②③C.③④ D.①④5.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分且不必要条件 D.既不充分也不必要条件6.已知扇形的圆心角为,面积为,则扇形的半径为()A. B.C. D.7.设是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则;②若,,,则;③若,,则;④若,,则.其中正确命题的序号是A.① B.②和③C.③和④ D.①和④8.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数α是()A.1 B.4C.1或4 D.2或49.函数的图象大致为()A. B.C. D.10.已知,且,则的最小值为()A.3 B.4C.5 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.求值:______.12.已知函数的两个零点分别为,则___________.13.已知集合,若,则_______.14.已知函数f(x)=lg(x2+2ax-5a)在[2,+∞)上是增函数,则a的取值范围为______15.设函数,若互不相等的实数、、满足,则的取值范围是_________16.在空间直角坐标系中,点关于平面的对称点是B,点和点的中点是E,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,解关于的不等式;(2)请判断函数是否可能有两个零点,并说明理由;(3)设,若对任意的,函数在区间上的最大值与最小值的差不超过1,求实数的取值范围.18.直线过点,且倾斜角为.(1)求直线的方程;(2)求直线与坐标轴所围成的三角形面积.19.已知函数,其中,且.(1)若函数的图像过点,且函数只有一个零点,求函数的解析式;(2)在(1)的条件下,若,函数在区间上单调递增,求实数的取值范围.20.如图,在四棱锥中,,是以为斜边的等腰直角三角形,且.(1)证明:平面平面.(2)若四棱锥的体积为4,求四面体的表面积.21.若集合,,.(1)求;(2)若,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】详解】令,则,选C.2、C【解题分析】利用分段函数的单调性列出不等式组,可得实数的取值范围【题目详解】在上单调递增,则解得故选:C【题目点拨】本题考查函数单调性的应用,考查分段函数,端点值的取舍是本题的易错3、A【解题分析】,故选A考点:1、三视图;2、体积【方法点晴】本题主要考查三视图和锥体的体积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握锥体和柱体的体积公式4、B【解题分析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解.【题目详解】①,为幂函数,且的指数,在上为增函数,故①不可选;②,,为对数型函数,且底数,在上为减函数,故②可选;③,在上为减函数,在上为增函数,故③可选;④为指数型函数,底数在上为增函数,故④不可选;综上所述,可选的序号为②③,故选B.【题目点拨】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题.5、A【解题分析】解指数不等式和对数不等式,求出两个命题的等价命题,进而根据充要条件的定义,可得答案【题目详解】“”“”,“”“”,“”是“”的充分而不必要条件,故“”是“”的的充分而不必要条件,故选:6、C【解题分析】利用扇形的面积公式即可求解.【题目详解】设扇形的半径为,则扇形的面积,解得:,故选:C7、A【解题分析】结合直线与平面垂直的性质和平行判定以及平面与平面的位置关系,逐项分析,即可.【题目详解】①选项成立,结合直线与平面垂直的性质,即可;②选项,m可能属于,故错误;③选项,m,n可能异面,故错误;④选项,该两平面可能相交,故错误,故选A.【题目点拨】本题考查了直线与平面垂直的性质,考查了平面与平面的位置关系,难度中等.8、C【解题分析】根据扇形的弧长公式和面积公式,列出方程组,求得的值,即可求解.【题目详解】设扇形所在圆的半径为,由扇形的周长是6,面积是2,可得,解得或,又由弧长公式,可得,即,当时,可得;当时,可得,故选:C.9、D【解题分析】根据函数的奇偶性可排除选项A,B;根据函数在上的单调性可排除选项C,进而可得正确选项.【题目详解】函数的定义域为且,关于原点对称,因为,所以是偶函数,图象关于轴对称,故排除选项A,B,当时,,由在上单调递增,在上单调递减,可得在上单调递增,排除选项C,故选:D.10、C【解题分析】依题意可得,则,再利用基本不等式计算可得;【题目详解】解:因为且,所以,所以当且仅当,即,时取等号;所以的最小值为故选:C【题目点拨】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方二、填空题:本大题共6小题,每小题5分,共30分。11、7【解题分析】利用指数式与对数式的互化,对数运算法则计算作答.【题目详解】.故答案为:712、【解题分析】依题意方程有两个不相等实数根、,利用韦达定理计算可得;【题目详解】解:依题意令,即,所以方程有两个不相等实数根、,所以,,所以;故答案为:13、【解题分析】根据求得,由此求得.【题目详解】由于,所以,所以.故答案为:14、【解题分析】利用对数函数的定义域以及二次函数的单调性,转化求解即可【题目详解】解:函数f(x)=lg(x2+2ax﹣5a)在[2,+∞)上是增函数,可得:,解得a∈[﹣2,4)故答案为[﹣2,4)【题目点拨】本题考查复合函数的单调性的应用,考查转化思想以及计算能力15、【解题分析】作出函数的图象,设,求出的取值范围以及的值,由此可求得的取值范围.【题目详解】作出函数的图象,设,如下图所示:二次函数的图象关于直线对称,则,由图可得,可得,解得,所以,.故答案为:.【题目点拨】关键点点睛:本题考查零点有关代数式的取值范围的求解,解题的关键在于利用利用图象结合对称性以及对数运算得出零点相关的等式与不等式,进而求解.16、【解题分析】先利用对称性求得点B坐标,再利用中点坐标公式求得点E坐标,然后利用两点间距离公式求解.【题目详解】因为点关于平面的对称点是,点和点的中点是,所以,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)不可能,理由见解析(3)【解题分析】(1)结合对数函数的定义域,解对数不等式求得不等式的解集.(2)由,求得,,但推出矛盾,由此判断没有两个零点.(3)根据函数在区间上的最大值与最小值的差不超过1列不等式,结合分离常数法来求得的取值范围.【小问1详解】当时,不等式可化为,有,有解得,故不等式,的解集为.【小问2详解】令,有,有,,,,则,若函数有两个零点,记,必有,,且有,此不等式组无解,故函数不可能有两个零点.【小问3详解】当,,时,,函数单调递减,有,有,有有,整理为,由对任意的恒成立,必有解得,又由,可得,由上知实数的取值范围为.18、(1);(2).【解题分析】(1)根据倾斜角得到斜率,再由点斜式,即可得出结果;(2)分别求出直线与坐标轴的交点坐标,进而可求出三角形面积.【题目详解】(1)∵倾斜角为,∴斜率,∴直线的方程为:,即;(2)由(1)得,令,则,即与轴交点为;令,则,以及与轴交点为;所以直线与坐标轴所围成的三角形面积为.19、(1)或(2)【解题分析】(1)因为,根据函数的图像过点,且函数只有一个零点,联立方程即可求得答案;(2)因为,由(1)可知:,可得,根据函数在区间上单调递增,即可求得实数的取值范围.【题目详解】(1)根据函数的图像过点,且函数只有一个零点可得,整理可得,消去得,解得或当时,,当时,,综上所述,函数的解析式为:或(2)当,由(1)可知:要使函数在区间上单调递增则须满足解得,实数的取值范围为.【题目点拨】本题考查了求解二次函数解析式和已知复合函数单调区间求参数范围.掌握复合函数单调性同增异减是解题关键,考查了分析能力和计算能力,属于中等题.20、(1)见解析(2)9【解题分析】(1)由已知可得,根据线面垂直的判定得平面,进而可得平面,由面面垂直的判定可得证.(2)根据四棱锥的体积可得.过作于,连接,可证得平面,.可求得,可求得四面体的表面积.【题目详解】(1)证明:∵是以为斜边的等腰直角三角形,∴,又,∴平面,则.又,∴平面.又平面,∴平面平面.(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论