2024届陕西省渭南市数学高一上期末综合测试试题含解析_第1页
2024届陕西省渭南市数学高一上期末综合测试试题含解析_第2页
2024届陕西省渭南市数学高一上期末综合测试试题含解析_第3页
2024届陕西省渭南市数学高一上期末综合测试试题含解析_第4页
2024届陕西省渭南市数学高一上期末综合测试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西省渭南市数学高一上期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.菱形ABCD在平面α内,PC⊥α,则PA与BD的位置关系是()A.平行 B.相交但不垂直C.垂直相交 D.异面且垂直2.函数满足:为偶函数:在上为增函数若,且,则与的大小关系是A. B.C. D.不能确定3.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过20的素数中,随机选取2个不同的数,其和等于20的概率是()【注:如果一个大于1的整数除了1和自身外无其它正因数,则称这个整数为素数.】A. B.C. D.4.已知函数,则的值等于A. B.C. D.5.已知函数,下列区间中包含零点的区间是()A. B.C. D.6.定义在上的奇函数,满足,则()A. B.C.0 D.17.已知函数在上是增函数,则的取值范围是()A. B.C. D.8.已知集合,,若,则的值为A.4 B.7C.9 D.109.已知集合,集合,则A. B.C. D.10.已知函数,且,则A. B.0C. D.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若方程有4个不同的实数根,则的取值范围是____12.已知偶函数在单调递减,.若,则的取值范围是__________.13.已知定义在R上的函数f(x),对任意实数x都有f(x+4)=-f(x),若函数f(x)的图象关于y轴对称,且f(-5)=2,则f(2021)=_____14.已知,,,则的最小值___________.15.已知,,则______.16.已知函数的零点为,则,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是定义在上的奇函数,当时,(1)求的解析式;(2)求不等式的解集.18.如图1,直角梯形ABCD中,,,.如图2,将图1中沿AC折起,使得点D在平面ABC上的正投影G在内部.点E为AB的中点.连接DB,DE,三棱锥D-ABC的体积为.对于图2的几何体(1)求证:;19.化简与计算(1);(2).20.已知函数.(1)求的单调区间;(2)若,且,求值.21.已知二次函数满足条件和,(1)求;(2)求在区间()上的最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由菱形ABCD平面内,则对角线,又,可得平面,进而可得,又显然,PA与BD不在同一平面内,可判断其位置关系.【题目详解】假设PA与BD共面,根据条件点和菱形ABCD都在平面内,这与条件相矛盾.故假设不成立,即PA与BD异面.又在菱形ABCD中,对角线,,,则且,所以平面平面.则,所以PA与BD异面且垂直.故选:D【题目点拨】本题考查异面直线的判定和垂直关系的证明,属于基础题.2、A【解题分析】根据题意,由为偶函数可得函数的对称轴为,进而结合函数的单调性可得上为减函数,结合,且分析可得,据此分析可得答案【题目详解】根据题意,函数满足为偶函数,则函数的对称轴为,则有,又由在上为增函数,则在上为减函数,若,则,又由,则,则有,又由,则,故选A【题目点拨】本题考查函数的单调性与奇偶性的综合应用,涉及函数的对称性,属于中档题3、A【解题分析】随机选取两个不同的数共有种,而其和等于20有2种,由此能求出随机选取两个不同的数,其和等于20的概率【题目详解】在不超过20的素数中有2,3,5,7,11,13,17,19共8个,随机选取两个不同的数共有种,随机选取两个不同的数,其和等于20有2种,分别为(3,17)和(7,13),故可得随机选取两个不同的数,其和等于20的概率,故选:4、C【解题分析】因为,所以,故选C.5、C【解题分析】根据函数零点的存在性定理,求得,即可得到答案.【题目详解】由题意,函数,易得函数为单调递减函数,又由,所以,根据零点的存在定理,可得零点的区间是.故选:C.6、D【解题分析】由得出,再结合周期性得出函数值.【题目详解】,,即,,则故选:D7、C【解题分析】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)>0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围【题目详解】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则当x∈[2,+∞)时,x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数即,f(2)=4+a>0解得﹣4<a≤4故选C【题目点拨】本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键8、A【解题分析】可知,或,所以.故选A考点:交集的应用9、B【解题分析】交集是两个集合的公共元素,故.10、D【解题分析】分别求和,联立方程组,进行求解,即可得到答案.【题目详解】由题意,函数,且,,则,两式相加得且,即,,则,故选D【题目点拨】本题主要考查了函数值的计算,结合函数奇偶性的性质建立方程组是解决本题的关键,着重考查了运算与求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先画出函数的图象,把方程有4个不同的实数根转化为函数的图象与有四个不同的交点,结合对数函数和二次函数的性质,即可求解.【题目详解】由题意,函数,要先画出函数的图象,如图所示,又由方程有4个不同的实数根,即函数的图象与有四个不同的交点,可得,且,则=,因为,则,所以.故答案为.【题目点拨】本题主要考查了函数与方程的综合应用,其中解答中把方程有4个不同的实数根,转化为两个函数的有四个交点,结合对数函数与二次函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.12、【解题分析】因为是偶函数,所以不等式,又因为在上单调递减,所以,解得.考点:本小题主要考查抽象函数的奇偶性与单调性,考查绝对值不等式的解法,熟练基础知识是关键.13、2【解题分析】先判断函数的奇偶性,再由恒成立的等式导出函数f(x)的周期,利用奇偶性及周期性化简求解即得.【题目详解】因为函数f(x)的图象关于y轴对称,则f(x)为偶函数,由f(x+4)=-f(x),可得f(x+8)=-f(x+4)=f(x),即函数f(x)的周期为8,则f(2021)=f(5+252×8)=f(5)=f(-5)=2,所以f(2021)=2.故答案为:214、【解题分析】利用“1”的变形,结合基本不等式,求的最小值.【题目详解】,当且仅当时,即等号成立,,解得:,,所以的最小值是.故答案为:15、【解题分析】把已知的两个等式两边平方作和即可求得cos(α﹣β)的值【题目详解】解:由已知sinα+sinβ=1①,cosα+cosβ=0②,①2+②2得:2+2cos(α﹣β)=1,∴cos(α﹣β),故答案为点睛】本题考查三角函数的化简求值,考查同角三角函数基本关系式及两角差的余弦,是基础题16、2【解题分析】根据函数的单调性及零点存在定理即得.【题目详解】∵函数,函数在上单调递增,又,∴,即.故答案为:2.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2).【解题分析】(1)当时,,利用,结合条件及可得解;(2)分析可得在上递增,进而得,从而得解.【题目详解】(1)当时,,则,为上的奇函数,且,;(2)因为当时,,所以在上递增,当时,,所以在上递增,所以在上递增,因为,所以由可得,所以不等式的解集为18、(1)证明见解析;(2).【解题分析】(1)取AC的中点F,连接DF,CE,EF,证明AC⊥平面DEF即可.(2)以G为坐标原点,建立空间直角坐标系,利用向量的方法求解线面角.【小问1详解】取AC的中点F,连接DF,CE,EF,则△DAC,△EAC均为等腰直角三角形∴AC⊥DF,AC⊥EF,∵DF∩EF=F,∴AC⊥平面DEF,又DE⊂平面DEF,∴DE⊥AC【小问2详解】连接GA,GC,∵DG⊥平面ABC,而GA⊂平面ABC,GC⊂平面ABC,∴DG⊥GA,DG⊥GC,又DA=DC,∴GA=GC,∴G在AC的垂直平分线上,又EA=EC,∴E在AC的垂直平分线上,∴EG垂直平分AC,又F为AC的中点,∴E,F,G共线∴S△ABC=×|AC|×|BC|=×6×6=18,∴VDABC=×S△ABC×|DG|=×18×|DG|=12,∴DG=2在Rt△DGF中,|GF|=以G为坐标原点,GM为x轴,GE为y轴,GD为z轴,建立如图所示的空间直角坐标系,则A(3,-1,0),E(0,2,0),C(-3,-1,0),D(0,0,2),∴=(0,2,-2),=(3,-1,-2),=(-3,-1,-2),设平面DAC的法向量为=(x,y,z),则,得,令z=1,得:,于是,.19、(1)(2)5【解题分析】(1)根据指数的运算性质计算即可;(2)根据对数的运算法则计算即可.【小问1详解】原式=.【小问2详解】原式.20、(1)的单调递增区间为,单调递减区间(2)【解题分析】(1)化简解析式,根据三角函数单调区间的求法,求得的单调区间.(2)求得、,结合两角差的正弦公式求得.【小问1详解】.由,得,的单调递增区间为,同理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论