2024届天津耀华嘉诚国际中学高一上数学期末复习检测试题含解析_第1页
2024届天津耀华嘉诚国际中学高一上数学期末复习检测试题含解析_第2页
2024届天津耀华嘉诚国际中学高一上数学期末复习检测试题含解析_第3页
2024届天津耀华嘉诚国际中学高一上数学期末复习检测试题含解析_第4页
2024届天津耀华嘉诚国际中学高一上数学期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届天津耀华嘉诚国际中学高一上数学期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的值为A. B.C. D.2.已知函数在R上为减函数,则实数a的取值范围是()A. B.C. D.3.下列哪一项是“”的必要条件A. B.C. D.4.下列函数中,为偶函数的是()A. B.C. D.5.若幂函数的图象经过点,则的值为()A. B.C. D.6.在中,,则等于A. B.C. D.7.已知函数的部分图象如图所示,则下列说法正确的是()A.该图象对应的函数解析式为B.函数的图象关于直线对称C.函数的图象关于点对称D.函数在区间上单调递减8.角的终边经过点,则的值为()A. B.C. D.9.将函数的图象先向左平移,然后将所得图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式为A. B.C. D.10.函数的部分图象大致是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知A、B均为集合的子集,且,,则集合________12.如图,在直四棱柱中,当底面ABCD满足条件___________时,有.(只需填写一种正确条件即可)13.已知圆锥的表面积为,且它的侧面展开图是一个半圆,求这个圆锥的体积是______14.函数的定义域为______.15.已知一容器中有两种菌,且在任何时刻两种菌的个数乘积为定值,为了简单起见,科学家用来记录菌个数的资料,其中为菌的个数,现有以下几种说法:①;②若今天值比昨天的值增加1,则今天的A菌个数比昨天的A菌个数多10;③假设科学家将B菌的个数控制为5万,则此时(注:)则正确的说法为________.(写出所有正确说法的序号)16.函数的定义域是__________,值域是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(常数).(1)当时,用定义证明在区间上是严格增函数;(2)根据的不同取值,判断函数的奇偶性,并说明理由;(3)令,设在区间上的最小值为,求的表达式.18.已知函数的图象相邻两条对称轴之间的距离为.(1)当时,求函数的最大值和最小值;(2)将函数的图象向左平移个单位后得到函数的图象,若为偶函数,求的值.19.已知函数,其中,再从条件①、条件②、条件③这三个条件中选择两个作为已知.条件①:;条件②:的最小正周期为;条件③:的图象经过点(1)求的解析式;(2)求的单调递增区间20.已知平面直角坐标系中,,,Ⅰ若三点共线,求实数的值;Ⅱ若,求实数的值;Ⅲ若是锐角,求实数的取值范围21.已知函数图象的一条对称轴方程为,且其图象上相邻两个零点的距离为.(1)求的解析式;(2)若对,不等式恒成立,求实数m的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据诱导公式将原式化简为,分子分母同除以,即可求出结果.【题目详解】因为,又,所以原式.故选B【题目点拨】本题主要考查诱导公式和同角三角函数基本关系,熟记公式即可,属于基础题型.2、D【解题分析】根据分段函数单调性,可得关于的不等式组,解不等式组即可确定的取值范围.【题目详解】函数在R上为减函数所以满足解不等式组可得.故选:D【题目点拨】本题考查了分段函数单调性的应用,根据分段函数的单调性求参数的取值范围,属于中档题.3、D【解题分析】根据必要条件的定义可知:“”能推出的范围是“”的必要条件,再根据“小推大”的原则去判断.【题目详解】由题意,“选项”是“”的必要条件,表示“”推出“选项”,所以正确选项为D.【题目点拨】推出关系能满足的时候,一定是小范围推出大范围,也就是“小推大”.4、D【解题分析】利用函数的奇偶性的定义逐一判断即可.【题目详解】A,因为函数定义域为:,且,所以为奇函数,故错误;B,因为函数定义域为:R,,而,所以函数为非奇非偶函数,故错误;C,,因为函数定义域为:R,,而,所以函数为非奇非偶函数,故错误;D,因为函数定义域为:R,,所以函数为偶函数,故正确;故选:D.5、C【解题分析】由已知可得,即可求得的值.【题目详解】由已知可得,解得.故选:C.6、C【解题分析】分析:利用两角和的正切公式,求出的三角函数值,求出的大小,然后求出的值即可详解:由,则,因为位三角形的内角,所以,所以,故选C点睛:本题主要考查了两角和的正切函数的应用,解答中注意公式的灵活运用以及三角形内角定理的应用,着重考查了推理与计算能力7、B【解题分析】先依据图像求得函数的解析式,再去代入验证对称轴、对称中心、单调区间的说法.【题目详解】由图象可知,即,所以,又,可得,又因为所以,所以,故A错误;当时,.故B正确;当时,,故C错误;当时,则,函数不单调递减.故D错误故选:B8、D【解题分析】根据三角函数定义求解即可.【题目详解】因为角的终边经过点,所以,,所以.故选:D9、C【解题分析】把原函数解析式中的换成,得到y=sin2x+π6-π3的图象,再把的系数变成原来的【题目详解】将函数y=sin2x-π3的图象先向左平移,得到然后将所得图象上所有的点的横坐标变为原来的2倍(纵坐标不变),得到y=sin1故选:C10、B【解题分析】判断f(x)的奇偶性,在(,π)上的单调性,再通过f()的值判断详解:f(﹣x)==﹣f(x),∴f(x)是奇函数,f(x)的图象关于原点对称,排除C;,排除A,当x>0时,f(x)=,f′(x)=,∴当x∈(,π)时,f′(x)>0,∴f(x)在(,π)上单调递增,排除D,故选B点睛:点睛:本题考查函数图象的判断与应用,考查转化思想以及数形结合思想的应用.对于已知函数表达式选图像的题目,可以通过表达式的定义域和值域进行排除选项,可以通过表达式的奇偶性排除选项;也可以通过极限来排除选项.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据集合的交集与补集运算,即可求得集合A中的元素.再判定其他元素是否符合要求.【题目详解】A、B均为集合的子集若,则若,则假设,因为,则.所以,则必含有1,不合题意,所以同理可判断综上可知,故答案为:【题目点拨】本题考查了元素与集合的关系,集合与集合的交集与补集运算,对于元素的分析方法,属于基础题.12、(答案不唯一)【解题分析】直四棱柱,是在上底面的投影,当时,可得,当然底面ABCD满足的条件也就能写出来了.【题目详解】根据直四棱柱可得:∥,且,所以四边形是矩形,所以∥,同理可证:∥,当时,可得:,且底面,而底面,所以,而,从而平面,因为平面,所以,所以当满足题意.故答案为:.13、【解题分析】设圆锥母线长为,底面圆半径长,侧面展开图是一个半圆,此半圆半径为,半圆弧长为,表面积是侧面积与底面积的和,则圆锥的底面直径圆锥的高点睛:本题主要考查了棱柱,棱锥,棱台的侧面积和表面积的知识点.首先,设圆锥母线长为,底面圆半径长,然后根据侧面展开图,分析出母线与半径的关系,然后求解其底面体积即可14、且【解题分析】由根式函数和分式函数的定义域求解.【题目详解】由,解得且,所以函数的定义域为且故答案为:且15、③【解题分析】对于①通过取特殊值即可排除,对于②③直接带入计算即可.【题目详解】当nA=1时,PA=0,故①错误;若PA=1,则nA=10,若PA=2,则nA=100,故②错误;B菌的个数为nB=5×104,∴,∴.又∵,∴故选③16、①.②.【解题分析】解不等式可得出原函数的定义域,利用二次函数的基本性质可得出原函数的值域.详解】对于函数,有,即,解得,且.因此,函数的定义域为,值域为.故答案为:;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)当时,奇函数;当时,非奇非偶函数,理由见解析.(3)【解题分析】(1)当时,得到函数,利用函数单调性的定义,即可作出证明;(2)分和两种情况,结合函数的奇偶性的定义,即可得出结论.(3)根据正负性,结合具体类型的函数的单调性,进行分类讨论可以求出的表达式;【小问1详解】当时,函数,设且,则,因为,可得又由,可得,所以所以,即,所以函数是上是严格增函数.【小问2详解】由函数的定义域为关于原点对称,当时,函数,可得,此时函数为奇函数;当时,,此时且,所以时,函数为非奇非偶函数.【小问3详解】,当时,,函数在区间的最小值为;当时,函数的对称轴为:.若,在区间的最小值为;若,在区间的最小值为;若,在区间的最小值为;当时,,在区间的最小值为.综上所述:;18、(1)(2)【解题分析】(1)根据题意可得,从而可求得,再根据正弦函数的性质结合整体思想即可得出答案;(2)求出平移后的函数的解析式,再根据正余弦函数的奇偶性即可得出答案.【小问1详解】解:因为函数的图象相邻两条对称轴之间的距离为,所以,所以,所以,所以,当时,,所以当时,函数取得最小值,当时,函数取得最大值,所以;【小问2详解】解:函数的图象向左平移个单位后,得到函数,因为为偶函数,所以,所以,又因为,所以.19、(1)条件选择见解析,;(2)单调递增区间为,.【解题分析】(1)利用三角恒等变换化简得出.选择①②:由可求得的值,由正弦型函数的周期公式可求得的值,可得出函数的解析式;选择②③:由正弦型函数的周期公式可求得的值,由可求得的值,可得出函数的解析式;选择①③:由可求得的值,由结合可求得的值,可得出函数的解析式;(2)解不等式,可得出函数单调递增区间.【小问1详解】解:.选择①②:因为,所以,又因为的最小正周期为,所以,所以;选择②③:因为的最小正周期为,所以,则,又因为,所以,所以;选择①③:因为,所以,所以又因为,所以,所以,又因为,所以,所以【小问2详解】解:依题意,令,,解得,,所以的单调递增区间为,.20、(Ⅰ)-2;(Ⅱ);(Ⅲ),且【解题分析】Ⅰ根据三点共线,即可得出,并求出,从而得出,求出;Ⅱ根据即可得出,进行数量积的坐标运算即可求出的值;Ⅲ根据是锐角即可得出,并且不共线,可求出,从而得出,且,解出的范围即可【题目详解】Ⅰ,B,P三点共线;;;;;Ⅱ;;;Ⅲ若是锐角,则,且不共线;;,且;解得,且;实数的取值范围为,且【题目点拨】本题主要考查向量平行时的坐标关系,向量平行的定义,以及向量垂直的充要条件,向量数量积的坐标运算,属于中档题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论