版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省大冶市一中2024届高一数学第一学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是定义域为的奇函数,且满足,当时,,则A.4 B.2C.-2 D.-42.设,表示两条直线,,表示两个平面,则下列命题正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则3.某几何体的三视图如图所示,则该几何的体积为A.16+8 B.8+8C.16+16 D.8+164.一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为A. B.C. D.5.函数的部分图象是()A. B.C. D.6.如图,正方体中,直线与所成角大小为A. B.C. D.7.已知,则的值是A.1 B.3C. D.8.已知函数函数有四个不同的零点,,,,且,则()A.1 B.2C.-1 D.9.已知函数在上是增函数,则实数的取值范围是A. B.C. D.10.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数若函数有三个不同的零点,且,则的取值范围是____12.=______13.若函数的图象与的图象关于对称,则_________.14.若函数在区间上是增函数,则实数取值范围是______15.已知一组数据的平均数,方差,则另外一组数据的平均数为___________,方差为___________.16.幂函数的图象经过点,则=____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.假设你有一笔资金用于投资,年后的投资回报总利润为万元,现有两种投资方案的模型供你选择.(1)请在下图中画出的图像;(2)从总利润的角度思考,请你选择投资方案模型.18.在①;②.请在上述两个条件中任选一个,补充在下面题目中,然后解答补充完整的问题.在中,角所对的边分别为,__________.(1)求角;(2)求的取值范围.19.已知直线经过直线与直线的交点,并且垂直于直线(Ⅰ)求交点的坐标;(Ⅱ)求直线的方程20.某水果经销商决定在八月份(30天计算)销售一种时令水果.在这30天内,日销售量h(斤)与时间t(天)满足一次函数h=t+2,每斤水果的日销售价格l(元)与时间t(天)满足如图所示的对应关系.(Ⅰ)根据提供的图象,求出每斤水果的日销售价格l(元)与时间t(天)所满足的函数关系式;(Ⅱ)设y(元)表示销售水果的日收入(日收入=日销售量×日销售价格),写出y与t的函数关系式,并求这30天中第几天日收入最大,最大值为多少元?21.已知函数(1)求函数的最小正周期;(2)求函数在上的最大值和最小值,并求函数取得最大值和最小值时的自变量的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】先利用周期性将转化为,再利用奇函数的性质将转化成,然后利用时的函数表达式即可求值.【题目详解】由可知,为周期函数,周期为,所以,又因为为奇函数,有,因为,所以,答案为B.【题目点拨】主要考查函数的周期性,奇偶性的应用,属于中档题.2、D【解题分析】对选项进行一一判断,选项D为面面垂直判定定理.【题目详解】对A,与可能异面,故A错;对B,可能在平面内;对C,与平面可能平行,故C错;对D,面面垂直判定定理,故选D.【题目点拨】本题考查空间中线、面位置关系,判断一个命题为假命题,只要能举出反例即可.3、A【解题分析】由已知中的三视图可得该几何体是一个半圆柱和正方体的组合体,半圆柱底面半径为2,故半圆柱的底面积半圆柱的高故半圆柱的体积为,长方体的长宽高分别为故长方体的体积为故该几何体的体积为,选A考点:三视图,几何体的体积4、D【解题分析】由几何体的正视图和俯视图可知,三棱锥的顶点在底面内的射影在底面棱上,则原几何体如图所示,从而侧视图为D.故选D5、C【解题分析】首先判断函数的奇偶性,即可排除AD,又,即可排除B.【题目详解】因为,定义域为R,关于原点对称,又,故函数为奇函数,图象关于原点对称,故排除AD;又,故排除B.故选:C.6、C【解题分析】连接通过线线平行将直线与所成角转化为与所成角,然后构造等边三角形求出结果【题目详解】连接如图就是与所成角或其补角,在正方体中,,故直线与所成角为.故选C.【题目点拨】本题考查了异面直线所成角的大小的求法,属于基础题,解题时要注意空间思维能力的培养.7、D【解题分析】由题意结合对数的运算法则确定的值即可.【题目详解】由题意可得:,则本题选择D选项.【题目点拨】本题主要考查指数对数互化,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.8、D【解题分析】将问题转化为两个函数图象的交点问题,然后结合图象即可解答.【题目详解】有四个不同的零点,,,,即方程有四个不同的解的图象如图所示,由二次函数的对称性,可得.因为,所以,故故选:D9、A【解题分析】当时,在上是增函数,且恒大于零,即当时,在上是减函数,且恒大于零,即,因此选A点睛:1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”
函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反10、D【解题分析】答案:D左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案二、填空题:本大题共6小题,每小题5分,共30分。11、;【解题分析】作图可知:点睛:利用函数零点情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.12、【解题分析】由题意结合指数的运算法则和对数的运算法则整理计算即可求得最终结果.【题目详解】原式=3+-2=.故答案为点睛】本题考查了指数与对数运算性质,考查了推理能力与计算能力,属于基础题13、【解题分析】求出的反函数即得【题目详解】因为函数的图象与的图象关于对称,所以是的反函数,的值域是,由得,即,所以故答案为:14、【解题分析】令,由题设易知在上为增函数,根据二次函数的性质列不等式组求的取值范围.【题目详解】由题设,令,而为增函数,∴要使在上是增函数,即在上为增函数,∴或,可得或,∴的取值范围是.故答案为:15、①.32②.135【解题分析】由平均数与方差的性质即可求解.【题目详解】由题意,数据的平均数为,方差为.故答案为:;16、2【解题分析】根据幂函数过点,求出解析式,再有解析式求值即可.【题目详解】设,则,所以,故,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)作图见解析(2)答案不唯一,具体见解析【解题分析】(1)根据指数函数描出几个特殊点,用平滑的曲线连接即可.(2)结合(1)中的图像,分析可得对于不同的值进行讨论即可求解.【题目详解】(1)(2)由图可知当时,;当时,当时,;当时,;当时,;所以当资金投资2年或4年时两种方案的回报总利润相同;当资金投资2年以内或4年以上,按照模型回报总利润为最大;当资金投资2年以上到4年以内,按照模型回报总利润最大.【题目点拨】本题考查了指数函数、二次函数模型的应用,属于基础题.18、(1)条件选择见解析,(2)【解题分析】(1)若选①,由正弦定理得,即可求出;若选②,由正弦定理得,即可求出.(2)用正弦定理得表示出,,得到,利用三角函数求出的取值范围.【小问1详解】若选①,则由正弦定理得,因为,所以,所以,所以,又因为,所以,所以,即.若选②,则由正弦定理得,所以,所以,因为,所以,所以,又因为,所以.【小问2详解】由正弦定理得,所以,同理,由,故,所以由,所以,所以,所以的取值范围是.19、(Ⅰ);(Ⅱ).【解题分析】(I)联立两条直线的方程,解方程组可求得交点坐标,已知直线的斜率为,和其垂直的直线斜率是,根据点斜式可写出所求直线的方程.试题解析:(Ⅰ)由得所以(,).(Ⅱ)因为直线与直线垂直,所以,所以直线的方程为.20、(I);(II)见解析.【解题分析】(Ⅰ)利用已知条件列出时间段上的函数的解析式即可.(Ⅱ)利用分段函数的解析式求解函数的最值即可【题目详解】解:(Ⅰ)当0<t≤10,l=30,当10<t≤30时,设函数关系式为l(t)=kt+b,则,解得k=-1,b=40,∴l(t)=-t+40,∴每斤水果的日销售价格l(元)与时间t(天)所满足的函数关系式l(t)=,(Ⅱ)当0≤t≤10,y=30(t+2)=15t+60,当10<t≤30时,y=(t+2)(-t+40)=-t2+18t+80∴y=,当0≤t≤10,y=15t+60为增函数,则ymax=210,当10<t≤30时,y=-t2+18t+80=-(t-18)2+242,当t=18时,ymax=242,综上所述,第18天日收入最大,最大值为242元【题目点拨】本题考查分段函数的应用,实际问题的处理方法,考查分析问题解决问题的能力.21、(1);(2)【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度体育健身场地空地租赁合同3篇
- 二零二五版标准材料采购与系统集成合同3篇
- 2025年度海洋测绘与海洋资源调查合同4篇
- 电信行业员工入职合同范文
- 航空器维修合同
- 农业行业农产品销售合同附加协议
- 2024年智能安防产品研发合作合同
- 物联网设备安装服务合同
- 2025年度培训课程开发保密合同范本
- 2025年度绿色能源项目融资租赁合同(可持续版)
- 中央2025年国务院发展研究中心有关直属事业单位招聘19人笔试历年参考题库附带答案详解
- 外呼合作协议
- 小学二年级100以内进退位加减法800道题
- 2025年1月普通高等学校招生全国统一考试适应性测试(八省联考)语文试题
- 《立式辊磨机用陶瓷金属复合磨辊辊套及磨盘衬板》编制说明
- 保险公司2025年工作总结与2025年工作计划
- 育肥牛购销合同范例
- 暨南大学珠海校区财务办招考财务工作人员管理单位遴选500模拟题附带答案详解
- DB51-T 2944-2022 四川省社会组织建设治理规范
- 2024北京初三(上)期末英语汇编:材料作文
- 2023年辅导员职业技能大赛试题及答案
评论
0/150
提交评论