上海高中2024届高一上数学期末检测试题含解析_第1页
上海高中2024届高一上数学期末检测试题含解析_第2页
上海高中2024届高一上数学期末检测试题含解析_第3页
上海高中2024届高一上数学期末检测试题含解析_第4页
上海高中2024届高一上数学期末检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海高中2024届高一上数学期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在四面体ABCD中,E,F分别是AC与BD的中点,若CD=2AB=4,EF⊥BA,则EF与CD所成的角为()A.90° B.45°C.60° D.30°2.设且则()A. B.C. D.3.已知命题p:“”,则为()A. B.C. D.4.已知为上的奇函数,,在为减函数.若,,,则a,b,c的大小关系为A. B.C. D.5.已知m,n表示两条不同直线,表示平面,下列说法正确的是A.若则 B.若,,则C.若,,则 D.若,,则6.已知、是两条不同的直线,、是两个不同的平面,给出下列命题:①若,,则;②若,,且,则;③若,,则;④若,,且,则其中正确命题的序号是()A.②③ B.①④C.②④ D.①③7.下列函数,其中既是偶函数又在区间上单调递减的函数为A. B.C. D.8.如图所示的是用斜二测画法画出的的直观图(图中虚线分别与轴,轴平行),则原图形的面积是()A.8 B.16C.32 D.649.不等式的解集为,则函数的图像大致为()A. B.C. D.10.若直线过点且倾角为,若直线与轴交于点,则点的坐标为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,则下列结论①的图象关于直线对称②的图象关于点对称③的图象向左平移个单位,得到一个偶函数的图象④的最小正周期为,且在上为增函数其中正确的序号为________.(填上所有正确结论的序号)12.函数的部分图象如图所示.若,且,则_____________13.已知函数,若关于的不等式在[0,1]上有解,则实数的取值范围为______14.满足的集合的个数是______________15.函数的单调递增区间为__________16.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是______答案】三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)解方程;(2)判断在上的单调性,并用定义加以证明;(3)若不等式对恒成立,求的取值范围.18.已知函数在区间上的最大值为5,最小值为1(1)求,的值;(2)若正实数,满足,求的最小值19.已知关于不等式.(1)若不等式的解集为,求实数的值;(2)若,成立,求实数的取值范围.20.已知,,计算:(1)(2)21.已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】设G为AD的中点,连接GF,GE,由三角形中位线定理可得,,则∠GFE即为EF与CD所成的角,结合AB=2,CD=4,EF⊥AB,在△GEF中,利用三角函数即可得到答案.【题目详解】解:设G为AD的中点,连接GF,GE则GF,GE分别为△ABD,△ACD的中线.∴,且,,且,则EF与CD所成角的度数等于EF与GE所成角的度数又EF⊥AB,∴EF⊥GF则△GEF为直角三角形,GF=1,GE=2,∠GFE=90°∴在直角△GEF中,∴∠GEF=30°故选:D.2、C【解题分析】试题分析:由已知得,,去分母得,,所以,又因为,,所以,即,选考点:同角间的三角函数关系,两角和与差的正弦公式3、C【解题分析】根据命题的否定的定义判断【题目详解】特称命题的否定是全称命题命题p:“”,的否定为:故选:C4、C【解题分析】由于为奇函数,故为偶函数,且在上为增函数.,所以,故选C.5、B【解题分析】线面垂直,则有该直线和平面内所有的直线都垂直,故B正确.考点:空间点线面位置关系6、A【解题分析】对于①当,时,不一定成立;对于②可以看成是平面的法向量,是平面的法向量即可;对于③可由面面垂直的判断定理作出判断;对于④,也可能相交【题目详解】①当,时,不一定成立,m可能在平面所以错误;②利用当两个平面的法向量互相垂直时,这两个平面垂直,故成立;③因为,则一定存在直线在,使得,又可得出,由面面垂直的判定定理知,,故成立;④,,且,,也可能相交,如图所示,所以错误,故选A【题目点拨】本题以命题的真假判断为载体考查了空间直线与平面的位置关系,熟练掌握空间线面关系的判定及几何特征是解答的关键7、A【解题分析】分别考查函数的奇偶性和函数的单调性即可求得最终结果.【题目详解】逐一考查所给的函数的性质:A.,函数为偶函数,在区间上单调递减;B.,函数为非奇非偶函数,在区间上单调递增;C.,函数为奇函数,在区间上单调递减;D.,函数为偶函数,在区间上单调递增;据此可得满足题意的函数只有A选项.本题选择A选项.【题目点拨】本题主要考查函数的单调性,函数的奇偶性等知识,意在考查学生的转化能力和计算求解能力.8、C【解题分析】由斜二测画法知识得原图形底和高【题目详解】原图形中,,边上的高为,故面积为32故选:C9、C【解题分析】根据不等式的解集求出参数,从而可得,根据该形式可得正确的选项【题目详解】因为不等式的解集为,故,故,故,令,解得或,故抛物线开口向下,与轴的交点的横坐标为,故选:C10、C【解题分析】利用直线过的定点和倾斜角写出直线的方程,求出与轴的交点,得出答案【题目详解】直线过点且倾角为,则直线方程为,化简得令,解得,点的坐标为故选:C【题目点拨】本题考查点斜式直线方程的应用,考查学生计算能力,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、③【解题分析】利用正弦型函数的对称性判断①②的正误,利用平移变换判断③的正误,利用周期性与单调性判断④的正误.【题目详解】解:对于①,因为f()=sinπ=0,所以不是对称轴,故①错;对于②,因为f()=sin,所以点不是对称中心,故②错;对于③,将把f(x)的图象向左平移个单位,得到的函数为y=sin[2(x)]=sin(2x)=cos2x,所以得到一个偶函数的图象;对于④,因为若x∈[0,],则,所以f(x)在[0,]上不单调,故④错;故正确的结论是③故答案为③【题目点拨】此题考查了正弦函数的对称性、三角函数平移的规律、整体角处理的方法,正弦函数的图象与性质是解本题的关键三、12、##【解题分析】根据函数的图象求出该函数的解析式,结合图象可知,点、关于直线对称,进而得出.【题目详解】由图象可知,,即,则,此时,,由于,所以,即.,且,由图象可知,,则.故答案为:.13、【解题分析】不等式在[0,1]上有解等价于,令,则.【题目详解】由在[0,1]上有解,可得,即令,则,因为,所以,则当,即时,,即,故实数的取值范围是故答案为【题目点拨】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.14、4【解题分析】利用集合的子集个数公式求解即可.【题目详解】∵,∴集合是集合的子集,∴集合的个数为,故答案为:.15、【解题分析】由可得,或,令,因为在上递减,函数在定义域内递减,根据复合函数的单调性可得函数的单调递增区间为,故答案为.16、【解题分析】设出该点的坐标,根据题意列方程组,从而求得该点到原点的距离【题目详解】设该点的坐标是(x,y,z),∵该点到三个坐标轴的距离都是1,∴x2+y2=1,x2+z2=1,y2+z2=1,∴x2+y2+z2,∴该点到原点的距离是故答案为【题目点拨】本题考查了空间中点的坐标与应用问题,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)在上单调递减,在上单调递增,证明见解析(3)【解题分析】(1)由已知得,解方程即可;(2)任取,且,则,分和讨论可得答案;(3)将不等式对恒成立问题转化为,的最小值问题,求出的最小值即可得的取值范围.【题目详解】(1)由已知.所以,得或,所以或;(2)任取,且,则因为,且,所以,.当时,恒成立,,即;当时,恒成立,,即.故在上单调递减,在上单调递增;(3),,令,.由(2)知,在上单调递减,在上单调递增,所以,所以,即,故的取值范围是.【题目点拨】本题考查函数单调性的判断和证明,考查函数不等式恒成立问题,转化为最值问题即可,是中档题.18、(1)(2)【解题分析】(1)根据最值建立方程后可求解;(2)运用基本不等式可求解.【小问1详解】由,可得其对称轴方程为,所以由题意有,解得.【小问2详解】由(1)为,则,(当且仅当时等号成立)所以的最小值为.19、(1);(2).【解题分析】(1)结合一元二次不等式的解集、一元二次方程的根的关系列方程,由此求得的值.(2)对分成可两种情况进行分类讨论,结合判别式求得的取值范围.【题目详解】(1)关于的不等式的解集为,∴和1是方程的两个实数根,代入得,解得;(2)当时,不等式为,满足题意;当时,应满足,解得;综上知,实数的取值范围是.20、(1);(2).【解题分析】(1)先把化为,然后代入可求;(2)先把化为,然后代入可求.【题目详解】(1);(2).【题目点拨】本题主要考查齐次式的求值问题,齐次式一般转化为含有正切的式子,结合正切值可求.21、a=-1或a=2【解题分析】函数的对称轴是,根据与区间的关系分类讨论得最大值,由最大值求得【题目详解】函数f(x)=-x2+2ax+1-a=-(x-a)2+a2-a+1,对称轴方程为x=a(1)当a<

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论