




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3勾股定理的应用北师版八年级上新知导入1.勾股定理的内容是什么?2.勾股定理的逆定理是什么?如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.a2+b2=c2直角三角形新知导入欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.新知讲解如图所示,有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm.在圆柱下底面的点A有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物,沿圆柱侧面爬行的最短路程是多少?(1)自己做一个圆柱,尝试从点A到点B沿圆柱侧面画出几条路线,你觉得哪条路线最短呢?新知讲解ABAB路线1路线2新知讲解ABAB路线3路线4新知讲解(2)如图所示,将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?你画对了吗?ABAB·两点之间,线段最短新知讲解(3)蚂蚁从点A出发,想吃到点B处的食物,它沿圆柱侧面爬行的最短路程是多少?AB·A’利用勾股定理解决该问题。已知圆柱的高是12,∴AA'=12;底面周长是18,∴A'B=9;∴AB2=AA'2+A'B2=144+81=225,∴AB=15答:爬行的最短路程是15cm。新知讲解【总结提高】求圆柱侧面上两点间的最短路线长的方法:先将圆柱的侧面展开,确定两点的位置,两点连接的线段即为最短路线,再在直角三角形中,利用勾股定理求其长度即可.新知讲解【做一做】李叔叔想要检测雕塑(如图)底座正面的边AD和边BC是否分别垂直于底边AB,但他随身只带了卷尺.(1)你能替他想办法完成任务吗?新知讲解【做一做】(2)李叔叔量得边AD长是30cm,边AB长是40cm,点B,D之间的距离是50cm,边AD垂直于边AB吗?∵AD2+AB2=302+402=2500BD2=2500∴AD2+AB2=BD2∴AD和AB垂直.新知讲解【做一做】(3)小明随身只有一个长度为20cm的刻度尺,他能有办法检验边AD是否垂直于边AB吗?边BC与边AB呢?在AD边上取AE=3cm,在AB上取AF=4cm,或AE=8cm,AF=15cm,量EF,只需保证斜边EF≤20cm的勾股数都可取。新知讲解在解一些求高度、宽度、长度、距离等的问题时,首先要结合题意画出符合要求的直角三角形,也就是把实际问题转化为数学问题,进而把要求的量看作直角三角形的一条边,然后利用勾股定理进行求解.【总结归纳】新知讲解【例】如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长.新知讲解【解】设滑道AC的长度为xm,则AB的长度为xm,AE的长度为(x-1)在Rt△ACE中,∠AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32=x2,解得x=5.故滑道AC的长度为5m.课堂练习1.如图,正方体的边长为1,一只蚂蚁沿正方体的表面从一个顶点A爬行到另一个顶点B,则蚂蚁爬行的最短路程的平方是()。A.2B.3C.4D.5D课堂练习2.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,则A,B两地的距离是________;若A地在C地的正东方向,则B地在C地的________方向.5km正北课堂练习3.甲、乙两位探险者,到沙漠进行探险。某日早晨8:00甲先出发,他以6千米/时的速度向东行走。1时后乙出发,他以5千米/时的速度向北行进。上午10:00,甲、乙两人相距多远?课堂练习解:根据题意,可知A是甲、乙的出发点,10:00时甲到达B点,则AB=2×6=12(千米);乙到达C点,则AC=1×5=5(千米).在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.拓展提高4.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?拓展提高我们可以将这个实际问题转化成数学模型.解:如图,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理可求得(x+1)2=x2+52,x2+2x+1=x2+25.解得x=12.则水池的深度为12尺,芦苇长13尺.中考链接5.(2019•南京)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有—_______cm.5中考链接6.(2018•湘潭)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程为__________________________.x2+32=(10-x)2课堂总结这节课你学到了什么?1.解决实际问题的方法是建立数学模型
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版数学六年级下册《练习五》具体内容及教学建议
- 长沙医学院《兼并与收购》2023-2024学年第二学期期末试卷
- 手足口病合并肺炎护理
- 山东省日照市岚山区2025届数学五年级第二学期期末达标检测试题含答案
- Web即时通讯系统课程
- 湖南三一工业职业技术学院《物流分析与设施规划》2023-2024学年第二学期期末试卷
- 潍坊护理职业学院《企业文化研究》2023-2024学年第二学期期末试卷
- 常德职业技术学院《化工制图与CAD实验》2023-2024学年第二学期期末试卷
- 西藏民族大学《实验室安全与规范》2023-2024学年第二学期期末试卷
- 广安职业技术学院《教学设计团体操创编理论与实践》2023-2024学年第二学期期末试卷
- 《基于Java学生管理系统的设计与实现》9500字(论文)
- DEFORM-3D塑性成形CAE应用教程
- 中国发作性睡病诊断与治疗指南(2022版)
- 读懂中国茶学习通超星期末考试答案章节答案2024年
- 2023-2024学年北京市通州区高一下学期期中物理试卷(解析版)
- 人教版(2019)必修第二册Unit4 History and traditions Reading and Thinking教案
- 2024艺人统筹服务合同
- 2024年机修钳工(高级技师)职业鉴定考试题库(含答案)
- 年级下册第6单元第1课时《海德薇格主题》223
- 钢结构吊装安全专项施工方案
- 2024年欧洲乙虫腈市场主要企业市场占有率及排名
评论
0/150
提交评论