山西省高中学阶段教育学校2024届数学九上期末教学质量检测试题含解析_第1页
山西省高中学阶段教育学校2024届数学九上期末教学质量检测试题含解析_第2页
山西省高中学阶段教育学校2024届数学九上期末教学质量检测试题含解析_第3页
山西省高中学阶段教育学校2024届数学九上期末教学质量检测试题含解析_第4页
山西省高中学阶段教育学校2024届数学九上期末教学质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省高中学阶段教育学校2024届数学九上期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141° B.144° C.147° D.150°2.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=()A.B.C.D.3.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是()A.504m2 B.m2 C.m2 D.1009m24.从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为()A. B. C. D.5.一块矩形菜地的面积是120平方米,如果它的长减少2米,菜地就变成正方形,则原菜地的长是()A.10 B.12 C.13 D.146.如图,转盘的红、黄、蓝、紫四个扇形区域的圆心角分别记为,,,.自由转动转盘,则下面说法错误的是()A.若,则指针落在红色区域的概率大于0.25B.若,则指针落在红色区域的概率大于0.5C.若,则指针落在红色或黄色区域的概率和为0.5D.若,则指针落在红色或黄色区域的概率和为0.57.下列计算①②③④⑤,其中任意抽取一个,运算结果正确的概率是()A. B. C. D.8.在二次函数的图像中,若随的增大而增大,则的取值范围是A. B. C. D.9.如果某人沿坡度为的斜坡前进10m,那么他所在的位置比原来的位置升高了()A.6m B.8m C.10m D.12m10.在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A. B. C. D.二、填空题(每小题3分,共24分)11.某厂前年缴税万元,今年缴税万元,如果该厂缴税的年平均增长率为,那么可列方程为______.12.如图,国庆节期间,小明一家自驾到某景区C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶8千米至B地,再沿北偏东45°方向行驶一段距离到达景区C,小明发现景区C恰好在A地的正北方向,则B,C两地的距离为_____.13.如图,正六边形ABCDEF中的边长为6,点P为对角线BE上一动点,则PC的最小值为_______.14.如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为________.15.函数是关于反比例函数,则它的图象不经过______的象限.16.若3是关于x的方程x2-x+c=0的一个根,则方程的另一个根等于____.17.如图,矩形的对角线、相交于点,AB与BC的比是黄金比,过点C作CE∥BD,过点D作DE∥AC,DE、交于点,连接AE,则tan∠DAE的值为___________.(不取近似值)18.已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为,根据题意可列方程为______.三、解答题(共66分)19.(10分)如图,在矩形ABCD中,AB=6,BC=8,点E是BC边上的一个动点(不与点B.

C重合),连结AE,并作EF⊥AE,交CD边于点F,连结AF.设BE=x,CF=y.(1)求证:△ABE∽△ECF;(2)当x为何值时,y的值为2;20.(6分)解方程或计算(1)解方程:3y(y-1)=2(y-1)(2)计算:sin60°cos45°+tan30°.21.(6分)如图,在矩形ABCD中,E是边CD的中点,点M是边AD上一点(与点A,D不重合),射线ME与BC的延长线交于点N.(1)求证:△MDE≌△NCE;(2)过点E作EF//CB交BM于点F,当MB=MN时,求证:AM=EF.22.(8分)如图,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)直接写出点A、B、C的坐标;(2)在抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点D是第一象限内抛物线上的一个动点(与点C、B不重合)过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把△BDF的面积分成两部分,使,请求出点D的坐标;(4)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请直接写出点M的坐标.23.(8分)如图,▱ABCD中,连接AC,AB⊥AC,tanB=,E、F分别是BC,AD上的点,且CE=AF,连接EF交AC与点G.(1)求证:G为AC中点;(2)若EF⊥BC,延长EF交BA的延长线于H,若FH=4,求AG的长.24.(8分)如图,在中,是边上的一点,若,求证:.25.(10分)已知:在⊙O中,弦AC⊥弦BD,垂足为H,连接BC,过点D作DE⊥BC于点E,DE交AC于点F(1)如图1,求证:BD平分∠ADF;(2)如图2,连接OC,若AC=BC,求证:OC平分∠ACB;(3)如图3,在(2)的条件下,连接AB,过点D作DN∥AC交⊙O于点N,若AB=3,DN=1.求sin∠ADB的值.26.(10分)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E=∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.【题目详解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故选B.【题目点拨】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180(n≥3)且n为整数).2、C【解题分析】根据圆内接四边形的性质求出∠A的度数,再根据圆周角定理求解即可.【题目详解】∵四边形ABCD为⊙O的内接四边形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圆周角定理得,2∠A=∠BOD=100°,故选C.【题目点拨】本题考查了圆内接四边形的性质,圆周角定理,熟练掌握圆内接四边形的对角互补是解题的关键.3、A【分析】由OA4n=2n知OA2017=+1=1009,据此得出A2A2018=1009-1=1008,据此利用三角形的面积公式计算可得.【题目详解】由题意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐标为(1008,0),∴A2018坐标为(1009,1),则A2A2018=1009-1=1008(m),∴=A2A2018×A1A2=×1008×1=504(m2).故选:A.【题目点拨】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.4、C【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【题目详解】解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,

其中构成三角形的有3,5,7共1种,∴能构成三角形的概率为:,故选C.点睛:此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.5、B【分析】设原菜地的长为,根据正方形的性质可得原矩形菜地的宽,再根据矩形的面积公式列出方程求解即可.【题目详解】设原菜地的长为,则原矩形菜地的宽由题意得:解得:,(不合题意,舍去)故选:B【题目点拨】本题考查了一元二次方程的实际应用,依据题意正确建立方程是解题关键.6、C【分析】根据概率公式计算即可得到结论.【题目详解】解:A、∵α>90°,,故A正确;B、∵α+β+γ+θ=360°,α>β+γ+θ,,故B正确;C、∵α-β=γ-θ,

∴α+θ=β+γ,∵α+β+γ+θ=360°,

∴α+θ=β+γ=180°,∴指针落在红色或紫色区域的概率和为0.5,故C错误;

D、∵γ+θ=180°,

∴α+β=180°,∴指针落在红色或黄色区域的概率和为0.5,故D正确;

故选:C.【题目点拨】本题考查了概率公式,熟练掌握概率公式是解题的关键.7、A【解题分析】根据计算结果和概率公式求解即可.【题目详解】运算结果正确的有⑤,则运算结果正确的概率是,故选:A.【题目点拨】考核知识点:求概率.熟记公式是关键.8、A【解题分析】∵二次函数的开口向下,∴所以在对称轴的左侧y随x的增大而增大.∵二次函数的对称轴是,∴.故选A.9、A【解题分析】设斜坡的铅直高度为3x,水平距离为4x,然后根据勾股定理求解即可.【题目详解】设斜坡的铅直高度为3x,水平距离为4x,由勾股定理得9x2+16x2=100,∴x=2,∴3x=6m.故选A.【题目点拨】此题主要考查坡度坡角及勾股定理的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.10、D【解题分析】解:三角形纸片ABC中,AB=8,BC=4,AC=1.A.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.二、填空题(每小题3分,共24分)11、【分析】由题意设该厂缴税的年平均增长率为x,根据该厂前年及今年的纳税额,即可得出关于x的一元二次方程.【题目详解】解:如果该厂缴税的年平均增长率为,那么可以用表示今年的缴税数,今年的缴税数为,然后根据题意列出方程.故答案为:.【题目点拨】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12、4千米.【分析】根据题意在图中作出直角三角形,由题中给出的方向角和距离,先求出的长,再根据等腰三角形的性质即可求得.【题目详解】过B作BD⊥AC于点D.在Rt△ABD中,BD=ABsin∠BAD=8×=4(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=4(千米),∴BC=,BD=4(千米).故答案为:4千米.【题目点拨】本题考查特殊角的三角函数值和利用三角函数解三角形,属基础题.13、.【分析】如图,过点C作CP⊥BE于P,可得CG为PC的最小值,由ABCDEF是正六边形,根据多边形内角和公式可得∠GBC=60°,进而可得∠BCG=30°,根据含30°角的直角三角形的性质及勾股定理即可求出PC的长.【题目详解】如图,过点C作CG⊥BE于G,∵点P为对角线BE上一动点,∴点P与点G重合时,PC最短,即CG为PC的最小值,∵ABCDEF是正六边形,∴∠ABC==120°,∴∠GBC=60°,∴∠BCG=30°,∵BC=6,∴BG=BC=3,∴CG===.故答案为:【题目点拨】本题考查正六边形的性质、含30°角的直角三角形的性质及勾股定理,根据垂线段最短得出点P的位置,并熟练掌握多边形内角和公式是解题关键.14、【题目详解】连接OA、OD,∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,∴OD:OE=OA:OB=:1,∵∠DOE+∠EOA=∠BOA+∠EOA,即∠DOA=∠EOB,∴△DOA∽△EOB,∴OD:OE=OA:OB=AD:BE=:1=,故答案为考点:1.相似三角形的判定与性质;2.等边三角形的性质15、第一、三象限【解题分析】试题解析:函数是关于的反比例函数,解得:比例系数它的图象在第二、四象限,不经过第一、三象限.故答案为第一、三象限.16、-1【解题分析】已知3是关于x的方程x1-5x+c=0的一个根,代入可得9-3+c=0,解得,c=-6;所以由原方程为x1-5x-6=0,即(x+1)(x-3)=0,解得,x=-1或x=3,即可得方程的另一个根是x=-1.17、【分析】根据AB与BC的比是黄金比得到AB∶BC=,连接OE与CD交于点G,过E点作EF⊥AF交AD延长线于F,证明四边形CEDO是菱形,得到,,即可求出tan∠DAE的值;【题目详解】解:∵AB与BC的比是黄金比,∴AB∶BC=连接OE与CD交于点G,过E点作EF⊥AF交AD延长线于F,矩形的对角线、相交于点,∵CE∥BD,DE∥AC,∴四边形CEDO是平行四边形,又∵是矩形,∴OC=OD,∴四边形CEDO是菱形(邻边相等的平行四边形是菱形),∴CD与OE垂直且平分,∴,∴,tan∠DAE,故答案为:;【题目点拨】本题主要考查了矩形的性质、菱形的判定与性质、平行四边形的判定与性质、黄金分割比,掌握邻边相等的平行四边形是菱形是解题的关键;18、【分析】根据相等关系:8100×(1+平均每年增长的百分率)2=12500即可列出方程.【题目详解】解:根据题意,得:.故答案为:.【题目点拨】本题考查的是一元二次方程的应用之增长降低率问题,一般的,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为:.三、解答题(共66分)19、(1)见解析;(2)x的值为2或1时,y的值为2【分析】(1)①先判断出∠BAE=∠CEF,即可得出结论;(2)利用的相似三角形得出比例式即可建立x,y的关系式,代入即可;【题目详解】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=90°.∵AE⊥EF,∴∠AEF=90°=∠B.∴∠BAE+∠AEB=90°,∠FEC+∠AEB=90°,∴∠BAE=∠CEF.又∵∠B=∠C,∴△ABE∽△ECF.②∵△ABE∽△ECF.∴,∵AB=1,BC=8,BE=x,CF=y,EC=8−x,∴.∴y=−x2+x.∵y=2,−x2+x=2,解得x1=2,x2=1.∵0<x<8,∴x的值为2或1.【题目点拨】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,解本题的关键是用方程的思想解决问题.20、(1)y1=1,y2=;(2)【分析】(1)先移项,再用提公因式法解方程即可;(2)将三角函数的对应值代入计算即可.【题目详解】(1)3y(y-1)=2(y-1),,(3y-2)(y-1)=0,y1=1,y2=;(2)sin60°cos45°+tan30°,,=.【题目点拨】此题考查计算能力,(1)是解方程,解方程时需根据方程的特点选择适合的方法使计算简便;(2)是三角函数值的计算,熟记各角的三角函数值是解题的关键.21、(1)见解析;(2)见解析.【分析】(1)由平行线的性质得出∠DME=∠CNE,∠MDE=∠ECN,可证明△MDE≌△NCE(AAS);(2)过点M作MG⊥BN于点G,由等腰三角形的性质得出BG=BN=BN,由中位线定理得出EF=BN,则可得出结论.【题目详解】解:(1)证明:∵四边形ABCD为矩形,∴AD//BC,∴∠DME=∠CNE,∠MDE=∠ECN,∵E为CD的中点,∴DE=CE,∴△MDE≌△NCE(AAS);(2)证明:过点M作MG⊥BN于点G,∵BM=MN,∴BG=BN=BN,∵矩形ABCD中,∠A=∠ABG=90°,又∵MG⊥BN,∴∠BGM=90°,∴四边形ABGM为矩形,∴AM=BG=,∵EF//BN,E为DC的中点,∴F为BM的中点,∴EF=BN,∴AM=EF.【题目点拨】本题考查了矩形的性质,等腰三角形的性质,中位线定理,全等三角形的判定与性质等知识,熟练掌握矩形的性质是解题的关键.22、(1)点A、B、C的坐标分别为:(−1,0)、(5,0)、(0,−5);(2)P(2,3);(3)D(,);(4)M的坐标为:(2,7)或(2,−3)或(2,6)或(2,−1).【分析】(1)令y=0,则x=−1或5,令x=0,则y=−5,即可求解;(2)点B是点A关于函数对称轴的对称点,连接BC交抛物线对称轴于点P,则点P为所求,即可求解;(3)S△BDE:S△BEF=2:3,则,即:,即可求解;(4)分MB为斜边、MC为斜边、BC为斜边三种情况,分别求解即可.【题目详解】(1)令y=0,则x=−1或5,令x=0,则y=−5,故点A、B、C的坐标分别为:(−1,0)、(5,0)、(0,−5);(2)抛物线的对称轴为:x=2,点B是点A关于函数对称轴的对称点,连接BC交抛物线对称轴于点P,则点P为所求,直线BC的表达式为:y=−x+5,当x=2时,y=3,故点P(2,3);(3)设点D(x,−x2+4x+5),则点E(x,−x+5),∵S△BDE:S△BEF=2:3,则,即:,解得:m=或5(舍去5),故点D(,);(4)设点M(2,m),而点B、C的坐标分别为:(5,0)、(0,−5),则MB2=9+m2,MC2=4+(m−5)2,BC2=50,①当MB为斜边时,则9+m2=4+(m−5)2+50,解得:m=7;②当MC为斜边时,则4+(m−5)2=9+m2+50,可得:m=−3;③当BC为斜边时,则4+(m−5)2+9+m2=50可得:m=6或−1;综上点M的坐标为:(2,7)或(2,−3)或(2,6)或(2,−1).【题目点拨】本题考查的是二次函数综合运用,涉及到一次函数、点的对称性、图形的面积计算等,其中(4),要注意分类求解,避免遗漏.23、(1)见解析;(2)【分析】(1)欲证明FG=EG,只要证明△AFG≌△CEG即可解决问题;

(2)先根据等角的三角函数得tanB==tan∠HAF==,则AF=CE=3,由cos∠C==,可得结论.【题目详解】解:(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FAG=∠ECG,在△AFG和△CEG中,∵,∴△AFG≌△CEG(AAS),∴AG=CG,∴G为AC中点;(2)解:∵EF⊥BC,AD∥BC,∴AF⊥HF,∠HAF=∠B,∴∠AFH=90°,Rt△AFH中,tanB==tan∠HAF==,∴=,∵FH=4,∴AF=CE=3,Rt△CEG中,cos∠C==,∴,∴AG=CG=.【题目点拨】本题考查了平行四边形的性质、全等三角形的判定和性质,三角函数等知识,(1)解题的关键是正确寻找全等三角形解决问题,(2)利用三角函数列等式是解题的关键.24、见解析【分析】根据相似三角形的判定,由题意可得,进而根据相似三角形的性质,可得,推论即可得出结论.【题目详解】证明:∵,∴,∴,即.【题目点拨】本题主要考察了相似三角形的判定以及性质,灵活运用相关性质是解题的关键.25、(1)证明见解析;(2)证明见解析;(3)sin∠ADB的值为.【分析】(1)根据等角的余角相等即可证明;(2)连接OA、OB.只要证明△OCB≌△OCA即可解决问题;(3)如图3中,连接BN,过点O作OP⊥BD于点P,过点O作OQ⊥AC于点Q,则四边形OPHQ是矩形,可知BN是直径,则HQ=OP=DN=,设AH=x,则AQ=x+,AC=2AQ=2x+1,BC=2x+1,CH=AC﹣AH=2x+1﹣x=x+1,在Rt△AHB中,BH2=AB2﹣AH2=()2﹣x2.在Rt△BCH中,BC2=BH2+CH2即(2x+1)2=()2﹣x2+(x+1)2,解得x=3,BC=2x+1=15,CH=x+1=12求出sin∠BCH,即为sin∠ADB的值.【题目详解】(1)证明:如图1,∵AC⊥BD,DE⊥BC,∴∠AHD=∠BED=10°,∴∠DAH+∠ADH=10°,∠DBE+∠BDE=10°,∵∠DAC=∠DBC,∴∠ADH=∠BDE,∴BD平分∠ADF;(2)证明:连接OA、OB.∵OB=OC=OA,AC=BC,∴△OCB≌△OCA(SSS),∴∠OCB=∠OCA,∴OC平分∠ACB;(3)如图3中,连接BN,过点O作OP⊥BD于点P,过点O作OQ⊥AC于点Q.则四边形OPHQ是矩形,∵DN∥AC,∴∠BDN=∠BHC=10°,∴BN是直径,则OP=DN=,∴HQ=OP=,设AH=x,则AQ=x+,AC=2AQ=2x+1,BC=AC=2x+1,∴CH=AC﹣AH=2x+1﹣x=x+1在Rt△AHB中,BH2=AB2﹣AH2=()2﹣x2.在Rt△BCH中,BC2=BH2+CH2,即(2x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论