版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一篇生物大分子的构造与功能第一章氨基酸和蛋白质一、构成蛋白质的20种氨基酸的分类1、非极性氨基酸包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸2、极性氨基酸极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸酸性氨基酸:天冬氨酸、谷氨酸碱性氨基酸:赖氨酸、精氨酸、组氨酸其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸属于亚氨基酸的是:脯氨酸含硫氨基酸包括:半胱氨酸、蛋氨酸注意:在识记时可以只记第一种字,如碱性氨基酸包括:赖精组二、氨基酸的理化性质1、两性解离及等电点氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。2、氨基酸的紫外吸取性质芳香族氨基酸在280nm波长附近有最大的紫外吸取峰,由于大多数蛋白质具有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。3、茚三酮反应氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸取峰在570nm波长处。由于此吸取峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析措施。三、肽两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简朴的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基构成的促肾上腺皮质激素称为多肽;51个氨基酸残基构成的胰岛素归为蛋白质。多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。人体内存在许多具有生物活性的肽,重要的有:谷胱甘肽(GSH):是由谷、半胱和甘氨酸构成的三肽。半胱氨酸的巯基是该化合物的重要功能基团。GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处在活性状态。四、蛋白质的分子构造1、蛋白质的一级构造:即蛋白质分子中氨基酸的排列次序。重要化学键:肽键,有些蛋白质还包括二硫键。2、蛋白质的高级构造:包括二级、三级、四级构造。1)蛋白质的二级构造:指蛋白质分子中某一段肽链的局部空间构造,也就是该段肽链骨架原子的相对空间位置,并不波及氨基酸残基侧链的构象。二级构造以一级构造为基础,多为短距离效应。可分为:α-螺旋:多肽链主链围绕中心轴呈有规律地螺旋式上升,顺时钟走向,即右手螺旋,每隔3.6个氨基酸残基上升一圈,螺距为0.540nm。α-螺旋的每个肽键的N-H和第四个肽键的羧基氧形成氢键,氢键的方向与螺旋长轴基本平形。β-折叠:多肽链充足伸展,各肽键平面折叠成锯齿状构造,侧链R基团交错位于锯齿状构造上下方;它们之间靠链间肽键羧基上的氧和亚氨基上的氢形成氢键维系构象稳定.β-转角:常发生于肽链进行180度回折时的转角上,常有4个氨基酸残基构成,第二个残基常为脯氨酸。无规卷曲:无确定规律性的那段肽链。重要化学键:氢键。2)蛋白质的三级构造:指整条肽链中所有氨基酸残基的相对空间位置,显示为长距离效应。重要化学键:疏水键(最重要)、盐键、二硫键、氢键、范德华力。3)蛋白质的四级构造:对蛋白质分子的二、三级构造而言,只波及一条多肽链卷曲而成的蛋白质。在体内有许多蛋白质分子具有二条或多条肽链,每一条多肽链均有其完整的三级构造,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和互相作用,为四级构造。由一条肽链形成的蛋白质没有四级构造。重要化学键:疏水键、氢键、离子键五、蛋白质构造与功能关系1、蛋白质一级构造是空间构象和特定生物学功能的基础。一级构造相似的多肽或蛋白质,其空间构象以及功能也相似。尿素或盐酸胍可破坏次级键β-巯基乙醇可破坏二硫键2、蛋白质空间构造是蛋白质特有性质和功能的构造基础。肌红蛋白:只有三级构造的单链蛋白质,易与氧气结合,氧解离曲线呈直角双曲线。血红蛋白:具有4个亚基构成的四级构造,可结合4分子氧。成人由两条α-肽链(141个氨基酸残基)和两条β-肽链(146个氨基酸残基)构成。在氧分压较低时,与氧气结合较难,氧解离曲线呈S状曲线。由于:第一种亚基与氧气结合后来,增进第二及第三个亚基与氧气的结合,目前三个亚基与氧气结合后,又大大增进第四个亚基与氧气结合,称正协同效应。结合氧后由紧张态变为松弛态。六、蛋白质的理化性质1、蛋白质的两性电离:蛋白质两端的氨基和羧基及侧链中的某些基团,在一定的溶液PH条件下可解离成带负电荷或正电荷的基团。2、蛋白质的沉淀:在合适条件下,蛋白质从溶液中析出的现象。包括:a.丙酮沉淀,破坏水化层。也可用乙醇。b.盐析,将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,破坏在水溶液中的稳定原因电荷而沉淀。3、蛋白质变性:在某些物理和化学原因作用下,其特定的空间构象被破坏,从而导致其理化性质的变化和生物活性的丧失。重要为二硫键和非共价键的破坏,不波及一级构造的变化。变性后,其溶解度减少,粘度增长,结晶能力消失,生物活性丧失,易被蛋白酶水解。常见的导致变性的原因有:加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂、超声波、紫外线、震荡等。4、蛋白质的紫外吸取:由于蛋白质分子中具有共轭双键的酪氨酸和色氨酸,因此在280nm处有特性性吸取峰,可用蛋白质定量测定。5、蛋白质的呈色反应a.茚三酮反应:经水解后产生的氨基酸可发生此反应,详见二、3b.双缩脲反应:蛋白质和多肽分子中肽键在稀碱溶液中与硫酸酮共热,展现紫色或红色。氨基酸不出现此反应。蛋白质水解加强,氨基酸浓度升高,双缩脲呈色深度下降,可检测蛋白质水解程度。七、蛋白质的分离和纯化1、沉淀,见六、22、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。根据支撑物不一样,有薄膜电泳、凝胶电泳等。3、透析:运用透析袋把大分子蛋白质与小分子化合物分开的措施。4、层析:a.离子互换层析,运用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不一样,故可以通过离子互换层析得以分离。如阴离子互换层析,含负电量小的蛋白质首先被洗脱下来。b.分子筛,又称凝胶过滤。小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。不一样蛋白质其密度与形态各不相似而分开。八、多肽链中氨基酸序列分析a.分析纯化蛋白质的氨基酸残基构成(蛋白质水解为个别氨基酸,测各氨基酸的量及在蛋白质中的百分构成)↓测定肽链头、尾的氨基酸残基二硝基氟苯法(DNP法)头端尾端羧肽酶A、B、C法等丹酰氯法↓水解肽链,分别分析胰凝乳蛋白酶(糜蛋白酶)法:水解芳香族氨基酸的羧基侧肽键胰蛋白酶法:水解赖氨酸、精氨酸的羧基侧肽键溴化脯法:水解蛋氨酸羧基侧的肽键↓Edman降解法测定各肽段的氨基酸次序(氨基末端氨基酸的游离α-氨基与异硫氰酸苯酯反应形成衍生物,用层析法鉴定氨基酸种类)b.通过核酸推演氨基酸序列。第二章核酸的构造与功能一、核酸的分子构成:基本构成单位是核苷酸,而核苷酸则由碱基、戊糖和磷酸三种成分连接而成。两类核酸:脱氧核糖核酸(DNA),存在于细胞核和线粒体内。核糖核酸(RNA),存在于细胞质和细胞核内。1、碱基:NH2NH2OCH3OOOOONH2胞嘧啶胸腺嘧啶尿嘧啶鸟嘌呤腺嘌呤嘌呤和嘧啶环中均具有共轭双键,因此对波长260nm左右的紫外光有较强吸取,这一重要的理化性质被用于对核酸、核苷酸、核苷及碱基进行定性定量分析。2、戊糖:DNA分子的核苷酸的糖是β-D-2-脱氧核糖,RNA中为β-D-核糖。3、磷酸:生物体内多数核苷酸的磷酸基团位于核糖的第五位碳原子上。二、核酸的一级构造核苷酸在多肽链上的排列次序为核酸的一级构造,核苷酸之间通过3′,5′磷酸二酯键连接。三、DNA的空间构造与功能1、DNA的二级构造DNA双螺旋构造是核酸的二级构造。双螺旋的骨架由糖和磷酸基构成,两股链之间的碱基互补配对,是遗传信息传递者,DNA半保留复制的基础,构造要点:a.DNA是一反向平行的互补双链构造亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,碱基之间以氢键相结合,其中,腺嘌呤一直与胸腺嘧啶配对,形成两个氢键,鸟嘌呤一直与胞嘧啶配对,形成三个氢键。b.DNA是右手螺旋构造螺旋直径为2nm。每旋转一周包括了10个碱基,每个碱基的旋转角度为36度。螺距为3.4nm,每个碱基平面之间的距离为0.34nm。c.DNA双螺旋构造稳定的维系横向靠互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,尤后来者为重要。2、DNA的三级构造三级构造是在双螺旋基础上深入扭曲形成超螺旋,使体积压缩。在真核生物细胞核内,DNA三级构造与一组组蛋白共同构成核小体。在核小体的基础上,DNA链经反复折叠形成染色体。3、功能DNA的基本功能就是作为生物遗传信息复制的模板和基因转录的模板,它是生命遗传繁殖的物质基础,也是个体生命活动的基础。DNA中的核糖和磷酸构成的分子骨架是没有差异的,不一样区段的DNA分子只是碱基的排列次序不一样。四、RNA的空间构造与功能DNA是遗传信息的载体,而遗传作用是由蛋白质功能来体现的,在两者之间RNA起着中介作用。其种类繁多,分子较小,一般以单链存在,可有局部二级构造,各类RNA在遗传信息体现为氨基酸序列过程中发挥不一样作用。如:名称功能核蛋白体RNA(rRNA)核蛋白体构成成分信使RNA(mRNA)蛋白质合成模板转运RNA(tRNA)转运氨基酸不均一核RNA(HnRNA)成熟mRNA的前体小核RNA(SnRNA)参与HnRNA的剪接、转运小核仁RNA(SnoRNA)rRNA的加工和修饰1、信使RNA(半衰期最短)1)hnRNA为mRNA的初级产物,通过剪接切除内含子,拼接外显子,成为成熟的mRNA并移位到细胞质2)大多数的真核mRNA在转录后5′末端加上一种7-甲基鸟嘌呤及三磷酸鸟苷帽子,帽子构造在mRNA作为模板翻译成蛋白质的过程中具有增进核蛋白体与mRNA的结合,加速翻译起始速度的作用,同步可以增强mRNA的稳定性。3′末端多了一种多聚腺苷酸尾巴,也许与mRNA从核内向胞质的转位及mRNA的稳定性有关。3)功能是把核内DNA的碱基次序,按照碱基互补的原则,抄录并转送至胞质,以决定蛋白质合成的氨基酸排列次序。mRNA分子上每3个核苷酸为一组,决定肽链上某一种氨基酸,为三联体密码。2、转运RNA(分子量最小)1)tRNA分子中具有10%~20%稀有碱基,包括双氢尿嘧啶,假尿嘧啶和甲基化的嘌呤等。2)二级构造为三叶草形,位于左右两侧的环状构造分别称为DHU环和Tψ环,位于下方的环叫作反密码环。反密码环中间的3个碱基为反密码子,与mRNA上对应的三联体密码子形成碱基互补。所有tRNA3′末端均有相似的CCA-OH构造。3)三级构造为倒L型。4)功能是在细胞蛋白质合成过程中作为多种氨基酸的戴本并将其转呈给mRNA。3、核蛋白体RNA(含量最多)1)原核生物的rRNA的小亚基为16S,大亚基为5S、23S;真核生物的rRNA的小亚基为18S,大亚基为5S、5.8S、28S。真核生物的18SrRNA的二级构造呈花状。2)rRNA与核糖体蛋白共同构成核糖体,它是蛋白质合成机器--核蛋白体的构成成分,参与蛋白质的合成。4、核酶:某些RNA分子自身具有自我催化能,可以完毕rRNA的剪接。这种具有催化作用的RNA称为核酶。五、核酸的理化性质1、DNA的变性在某些理化原因作用下,如加热,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋构造松散,变成单链,即为变性。监测与否发生变性的一种最常用的指标是DNA在紫外区260nm波长处的吸光值变化。解链过程中,吸光值增长,并与解链程度有一定的比例关系,称为DNA的增色效应。紫外光吸取值到达最大值的50%时的温度称为DNA的解链温度(Tm),一种DNA分子的Tm值大小与其所含碱基中的G+C比例有关,G+C比例越高,Tm值越高。2、DNA的复性和杂交变性DNA在合适条件下,两条互补链可重新恢复天然的双螺旋构象,这一现象称为复性,其过程为退火,产生减色效应。不一样来源的核酸变性后,合并一起复性,只要这些核苷酸序列可以形成碱基互补配对,就会形成杂化双链,这一过程为杂交。杂交可发生于DNA-DNA之间,RNA-RNA之间以及RNA-DNA之间。六、核酸酶(注意与核酶区别)指所有可以水解核酸的酶,在细胞内催化核酸的降解。可分为DNA酶和RNA酶;外切酶和内切酶;其中一部分具有严格的序列依赖性,称为限制性内切酶。第三章酶一、酶的构成单纯酶:仅由氨基酸残基构成的酶。结合酶:酶蛋白:决定反应的特异性;辅助因子:决定反应的种类与性质;可认为金属离子或小分子有机化合物。可分为辅酶:与酶蛋白结合疏松,可以用透析或超滤措施除去。辅基:与酶蛋白结合紧密,不能用透析或超滤措施除去。酶蛋白与辅助因子结合形成的复合物称为全酶,只有全酶才有催化作用。参与构成辅酶的维生素转移的基团辅酶或辅基所含维生素氢原子NAD+﹑NADP+尼克酰胺(维生素PP)FMN﹑FAD维生素B2醛基TPP维生素B1酰基辅酶A﹑硫辛酸泛酸、硫辛酸烷基钴胺类辅酶类维生素B12二氧化碳生物素生物素氨基磷酸吡哆醛吡哆醛(维生素B6)甲基、等一碳单位四氢叶酸叶酸二、酶的活性中心酶的活性中心由酶作用的必需基团构成,这些必需基团在空间位置上靠近构成特定的空间构造,能与底物特异地结合并将底物转化为产物。对结合酶来说,辅助因子参与酶活性中心的构成。但有某些必需基团并不参与活性中心的构成。三、酶反应动力学酶促反应的速度取决于底物浓度、酶浓度、PH、温度、激动剂和克制剂等。1、底物浓度1)在底物浓度较低时,反应速度随底物浓度的增长而上升,加大底物浓度,反应速度趋缓,底物浓度深入增高,反应速度不再随底物浓度增大而加紧,达最大反应速度,此时酶的活性中心被底物饱合。2)米氏方程式V=Vmax[S]/Km+[S]a.米氏常数Km值等于酶促反应速度为最大速度二分之一时的底物浓度。b.Km值愈小,酶与底物的亲和力愈大。c.Km值是酶的特性性常数之一,只与酶的构造、酶所催化的底物和反应环境如温度、PH、离子强度有关,与酶的浓度无关。d.Vmax是酶完全被底物饱和时的反应速度,与酶浓度呈正比。2、酶浓度在酶促反应系统中,当底物浓度大大超过酶浓度,使酶被底物饱和时,反应速度与酶的浓度成正比关系。3、温度温度对酶促反应速度具有双重影响。升高温度首先可加紧酶促反应速度,同步也增长酶的变性。酶促反应最快时的环境温度称为酶促反应的最适温度。酶的活性虽然随温度的下降而减少,但低温一般不使酶破坏。酶的最适温度不是酶的特性性常数,它与反应进行的时间有关。4、PH酶活性受其反应环境的PH影响,且不一样的酶对PH有不一样规定,酶活性最大的某一PH值为酶的最适PH值,如胃蛋白酶的最适PH约为1.8,肝精氨酸酶最适PH为9.8,但多数酶的最适PH靠近中性。最适PH不是酶的特性性常数,它受底物浓度、缓冲液的种类与浓度、以及酶的纯度等原因影响。5、激活剂使酶由无活性或使酶活性增长的物质称为酶的激活剂,大多为金属离子,也有许多有机化合物激活剂。分为必需激活剂和非必需激活剂。6、克制剂凡能使酶的催化活性下降而不引起酶蛋白变性的物质统称为酶的克制剂。大多与酶的活性中心内、外必需基团相结合,从而克制酶的催化活性。可分为:1)不可逆性克制剂:以共价键与酶活性中心上的必需基团相结合,使酶失活。此种克制剂不能用透析、超滤等措施清除。又可分为:a.专一性克制剂:如农药敌百虫、敌敌畏等有机磷化合物能特民地与胆碱酯酶活性中心丝氨酸残基的羟基结合,使酶失活,解磷定可解除有机磷化合物对羟基酶的克制作用。b.非专一性克制剂:如低浓度的重金属离子如汞离子、银离子可与酶分子的巯基结合,使酶失活,二巯基丙醇可解毒。化学毒气路易士气是一种含砷的化合物,能克制体内的巯基酶而使人畜中毒。2)可逆性克制剂:一般以非共价键与酶和(或)酶-底物复合物可逆性结合,使酶活性减少或消失。采用透析或超滤的措施可将克制剂除去,使酶恢复活性。可分为:a.竞争性克制剂:与底物竞争酶的活性中心,从而阻碍酶与底物结合形成中间产物。如丙二酸对琥珀酸脱氢酶的克制作用;磺胺类药物由于化学构造与对氨基苯甲酸相似,是二氢叶酸合成酶的竞争克制剂,克制二氢叶酸的合成;许多抗代谢的抗癌药物,如氨甲蝶呤(MTX)、5-氟尿嘧啶(5-FU)、6-巯基嘌呤(6-MP)等,几乎都是酶的竞争性克制剂,分别克制四氢叶酸、脱氧胸苷酸及嘌呤核苷酸的合成。Vmax不变,Km值增大b.非竞争性克制剂:与酶活性中心外的必需基团结合,不影响酶与底物的结合,酶和底物的结合也不影响与克制剂的结合。Vmax减少,Km值不变c.反竞争性克制剂:仅与酶和底物形成的中间产物结合,使中间产物的量下降。Vmax、Km均减少四、酶活性的调整1、酶原的激活有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定条件下,这些酶的前体水解一种或几种特定的肽键,致使构象发生变化,体现出酶的活性。酶原的激活实际上是酶的活性中心形成或暴露的过程。生理意义是防止细胞产生的蛋白酶对细胞进行自身消化,并使酶在特定的部位环境中发挥作用,保证体内代谢正常进行。2、变构酶体内某些代谢物可以与某些酶分子活性中心外的某一部位可逆地结合,使酶发生变构并变化其催化活性,有变构激活与变构克制。3、酶的共价修饰调整酶蛋白肽链上的某些基团可与某种化学基团发生可逆的共价结合,从而变化酶的活性,这一过程称为酶的共价修饰。在共价修饰过程中,酶发生无活性与有活性两种形式的互变。酶的共价修饰包括磷酸化与脱磷酸化、乙酰化与脱乙酰化、甲基化与脱甲基化、腺苷化与脱腺苷化等,其中以磷酸化修饰最为常见。五、同工酶同工酶是指催化相似的化学反应,而酶蛋白的分子构造、理化性质乃至免疫学性质不一样的一组酶。同工酶是由不一样基因或等位基因编码的多肽链,或由同一基因转录生成的不一样mRNA翻译的不一样多肽链构成的蛋白质。翻译后经修饰生成的多分子形式不在同工酶之列。同工酶存在于同一种属或同一种体的不一样组织或同一细胞的不一样亚细胞构造中。如乳酸脱氢酶是四聚体酶。亚基有两型:骨骼肌型(M型)和心肌型(H型)。两型亚基以不一样比例构成五种同工酶,如LDH1(HHHH)、LDH2(HHHM)等。它们具有不一样的电泳速度,对同一底物体现不一样的Km值。单个亚基无酶的催化活性。心肌、肾以LDH1为主,肝、骨骼肌以LDH5为主。肌酸激酶是二聚体,亚基有M型(肌型)和B型(脑型)两种。脑中含CK1(BB型);骨骼肌中含CK3(MM型);CK2(MB型)仅见于心肌。第四章维生素一、脂溶性维生素1、维生素A作用:与眼视觉有关,合成视紫红质的原料;维持上皮组织构造完整;增进生长发育。缺乏可引起夜盲症、干眼病等。2、维生素D作用:调整钙磷代谢,增进钙磷吸取。缺乏小朋友引起佝偻病,成人引起软骨病。3、维生素E作用:体内最重要的抗氧化剂,保护生物膜的构造与功能;增进血红素代谢;动物试验发现与性器官的成熟与胚胎发育有关。4、维生素K作用:与肝脏合成凝血因子Ⅱ、Ⅶ、Ⅸ、Ⅹ有关。缺乏时可引起凝血时间延长,血块回缩不良。二、水溶性维生素1、维生素B1又名硫胺素,体内的活性型为焦磷酸硫胺素(TPP)TPP是α-酮酸氧化脱羧酶和转酮醇酶的辅酶,并可克制胆碱酯酶的活性,缺乏时可引起脚气病和(或)末梢神经炎。2、维生素B2又名核黄素,体内的活性型为黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)FMN和FAD是体内氧化还原酶的辅基,缺乏时可引起口角炎、唇炎、阴囊炎、眼睑炎等症。3、维生素PP包括尼克酸及尼克酰胺,肝内能将色氨酸转变成维生素PP,体内的活性型包括尼克酰胺腺嘌呤二核苷酸(NAD+)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+)。NAD+和NADP+在体内是多种不需氧脱氢酶的辅酶,缺乏时称为癞皮症,重要体现为皮炎、腹泻及痴呆。4、维生素B6包括吡哆醇、吡哆醛及吡哆胺,体内活性型为磷酸吡哆醛和磷酸吡哆胺。磷酸吡哆醛是氨基酸代谢中的转氨酶及脱羧酶的辅酶,也是δ-氨基γ-酮戊酸(ALA)合成酶的辅酶。5、泛酸又称遍多酸,在体内的活性型为辅酶A及酰基载体蛋白(ACP)。在体内辅酶A及酰基载体蛋白(ACP)构成酰基转移酶的辅酶。6、生物素生物素是体内多种羧化酶的辅酶,如丙酮酸羧化酶,参与二氧化碳的羧化过程。7、叶酸以四氢叶酸的形式参与一碳基团的转移,一碳单位在体内参与多种物质的合成,如嘌呤、胸腺嘧啶核苷酸等。叶酸缺乏时,DNA合成受克制,骨髓幼红细胞DNA合成减少,导致巨幼红细胞贫血。8、维生素B12又名钴胺素,唯一含金属元素的维生素。参与同型半工半胱氨酸甲基化生成蛋氨酸的反应,催化这一反应的蛋氨酸合成酶(又称甲基转移酶)的辅基是维生素B12,它参与甲基的转移。首先不利于蛋氨酸的生成,同步也影响四氢叶酸的再生,最终影响嘌呤、嘧啶的合成,而导致核酸合成障碍,产生巨幼红细胞性贫血。9、维生素C增进胶原蛋白的合成;是催化胆固醇转变成7-α羟胆固醇反应的7-α羟化酶的辅酶;参与芳香族氨基酸的代谢;增长铁的吸取;参与体内氧化还原反应,保护巯基等作用。第二篇物质代谢及其调整第一章糖代谢一、糖酵解1、过程:见图1-1糖酵解过程中包括两个底物水平磷酸化:一为1,3-二磷酸甘油酸转变为3-磷酸甘油酸;二为磷酸烯醇式丙酮酸转变为丙酮酸。2、调整1)6-磷酸果糖激酶-1变构克制剂:ATP、柠檬酸变构激活剂:AMP、ADP、1,6-双磷酸果糖(产物反馈激,比较少见)和2,6-双磷酸果糖(最强的激活剂)。2)丙酮酸激酶变构克制剂:ATP、肝内的丙氨酸变构激活剂:1,6-双磷酸果糖3)葡萄糖激酶变构克制剂:长链脂酰辅酶A注:此项无需死记硬背,理解基础上记忆是很轻易的,如懂得糖酵解是产生能量的,那么有ATP等能量形式存在,则可克制该反应,以利节能,上述的柠檬酸经三羧酸循环也是可以产生能量的,因此也起克制作用;产物一般来说是反馈克制的;但也有特殊,如上述的1,6-双磷酸果糖。特殊的需要记忆,只属少数。如下类同。有关共价修饰的调整,只需记住几种特殊的即可,下面章节提及。(1)糖原1-磷酸葡萄糖(2)葡萄糖己糖激酶6-磷酸葡萄糖6-磷酸果糖6-磷酸果糖-1-激酶ATPADPATPADP磷酸二羟丙酮1,6-二磷酸果糖3-磷酸甘油醛1,3-二磷酸甘油酸NAD+NADH+H+3-磷酸甘油酸2-磷酸甘油酸磷酸烯醇式丙酮酸丙酮酸激酶ADPATPADPATP丙酮酸乳酸NADH+H+NAD+注:红色表达该酶为该反应的限速酶;蓝色ATP表达消耗,红色ATP和NADH等表达生成的能量或可以转变为能量的物质。如下类同。(图1-1)3、生理意义1)迅速提供能量,尤其对肌肉收缩更为重要。若反应按(1)进行,可净生成3分子ATP,若反应按(2)进行,可净生成2分子ATP;此外,酵解过程中生成的2个NADH在有氧条件下经电子传递链,发生氧化磷酸化,可生成更多的ATP,但在缺氧条件下丙酮酸转化为乳酸将消耗NADH,无NADH净生成。2)成熟红细胞完全依赖糖酵解供能,神经、白细胞、骨髓等代谢极为活跃,虽然不缺氧也常由糖酵解提供部分能量。3)红细胞内1,3-二磷酸甘油酸转变成的2,3-二磷酸甘油酸可与血红蛋白结合,使氧气与血红蛋白结合力下降,释放氧气。4)肌肉中产生的乳酸、丙氨酸(由丙酮酸转变)在肝脏中能作为糖异生的原料,生成葡萄糖。4、乳酸循环葡萄糖葡萄糖葡萄糖糖糖异酵生解途途径径丙酮酸丙酮酸乳酸乳酸乳酸(肝)(血液)(肌肉)乳酸循环是由于肝内糖异生活跃,又有葡萄糖-6-磷酸酶可水解6-磷酸葡萄糖,释出葡萄糖。肌肉除糖异生活性低外,又没有葡萄糖-6-磷酸酶。生理意义:防止损失乳酸以及防止因乳酸堆积引起酸中毒。二、糖有氧氧化1、过程1)、经糖酵解过程生成丙酮酸2)、丙酮酸丙酮酸脱氢酶复合体乙酰辅酶ANAD+NADH+H+限速酶的辅酶有:TPP﹑FAD﹑NAD+﹑CoA及硫辛酸3)、三羧酸循环草酰乙酸+乙酰辅酶A柠檬酸合成酶柠檬酸异柠檬酸异柠檬酸脱氢酶NAD+NADH+H+α-酮戊二酸α-酮戊二酸脱氢酶复合体琥珀酸酰CoA琥珀酸NAD+NADH+H+GDPGTP延胡索酸苹果酸草酰乙酸FADFADH2NAD+NADH+H+三羧酸循环中限速酶α-酮戊二酸脱氢酶复合体的辅酶与丙酮酸脱氢酶复合体的辅酶同。三羧酸循环中有一种底物水平磷酸化,即琥珀酰COA转变成琥珀酸,生成GTP;加上糖酵解过程中的两个,本书中共三个底物水平磷酸化。2、调整1)丙酮酸脱氢酶复合体克制:乙酰辅酶A、NADH、ATP激活:AMP、钙离子2)异柠檬酸脱氢酶和α-酮戊二酸脱氢酶NADH、ATP反馈克制3、生理意义1)基本生理功能是氧化供能。2)三羧酸循环是体内糖、脂肪和蛋白质三大营养物质代谢的最终共同途径。3)三羧酸循环也是三大代谢联络的枢纽。4、有氧氧化生成的ATP葡萄糖有氧氧化生成的ATP反应辅酶ATP第一阶段葡萄糖6-磷酸葡萄糖-16-磷酸果糖1,6双磷酸果糖-12*3-磷酸甘油醛2*1,3-二磷酸甘油酸NAD+2*3或2*2(详见)2*1,3-二磷酸甘油酸2*3-磷酸甘油酸2*12*磷酸烯醇式丙酮酸2*丙酮酸2*1第二阶段2*丙酮酸2*乙酰CoANAD+2*3第三阶段2*异柠檬酸2*α-酮戊二酸NAD+2*32*α-酮戊二酸2*琥珀酰CoANAD+2*32*琥珀酰CoA2*琥珀酸2*12*琥珀酸2*延胡索酸FAD2*22*苹果酸2*草酰乙酸NAD+2*3净生成38或36个ATP5、巴斯德效应有氧氧化克制糖酵解的现象。三、磷酸戊糖途径1、过程6-磷酸葡萄糖NADP+6-磷酸葡萄糖脱氢酶NADPH6-磷酸葡萄糖酸内酯6-磷酸葡萄糖酸NADP+NADPH5-磷酸核酮糖5-磷酸核糖5-磷酸木酮糖7-磷酸景天糖3-磷酸甘油醛5-磷酸木酮糖4-磷酸赤藓糖6-磷酸果糖3-磷酸甘油醛6-磷酸果糖6-磷酸果糖2、生理意义1)为核酸的生物合成提供5-磷酸核糖,肌组织内缺乏6-磷酸葡萄糖脱氢酶,磷酸核糖可经酵解途径的中间产物3-磷酸甘油醛和6-磷酸果糖经基团转移反应生成。2)提供NADPHa.NADPH是供氢体,参与多种生物合成反应,如从乙酰辅酶A合成脂酸、胆固醇;α-酮戊二酸与NADPH及氨生成谷氨酸,谷氨酸可与其他α-酮酸进行转氨基反应而生成对应的氨基酸。b.NADPH是谷胱甘肽还原酶的辅酶,对维持细胞中还原型谷胱甘肽的正常含量进而保护巯基酶的活性及维持红细胞膜完整性很重要,并可保持血红蛋白铁于二价。c.NADPH参与体内羟化反应,有些羟化反应与生物合成有关,如从胆固醇合成胆汁酸、类固醇激素等;有些羟化反应则与生物转化有关。四、糖原合成与分解1、合成过程:葡萄糖6-磷酸葡萄糖1-磷酸葡萄糖UDPG焦磷酸化酶尿苷二磷酸葡萄糖UTPPPi(UDPG)糖原合成酶(G)n+1+UDP(G)n注:1)UDPG可看作是活性葡萄糖,在体内充作葡萄糖供体。2)糖原引物是指原有的细胞内较小的糖原分子,游离葡萄糖不能作为UDPG的葡萄糖基的接受体。3)葡萄糖基转移给糖原引物的糖链末端,形成α-1,4糖苷键。在糖原合酶作用下,糖链只能延长,不能形成分支。当糖链长度到达12~18个葡萄糖基时,分支酶将约6~7个葡萄糖基转移至邻近的糖链上,以α-1,6糖苷键相接。调整:糖原合成酶的共价修饰调整。2、分解过程:(G)n+1磷酸化酶(G)n+1-磷酸葡萄糖6-磷酸葡萄糖葡萄糖-6-磷酸酶G+Pi注:1)磷酸化酶只能分解α-1,4糖苷键,对α-1,6糖苷键无作用。2)糖链分解至离分支处约4个葡萄基时,转移酶把3个葡萄基转移至邻近糖链的末端,仍以α-1,4糖苷键相接,剩余1个以α-1,6糖苷键与糖链形成分支的葡萄糖基被α-1,6葡萄糖苷酶水解成游离葡萄糖。转移酶与α-1,6葡萄糖苷酶是同一酶的两种活性,合称脱支酶。3)最终产物中约85%为1-磷酸葡萄糖,其他为游离葡萄糖。调整:磷酸化酶受共价修饰调整,葡萄糖起变构克制作用。五、糖异生途径1、过程乳酸丙氨酸等生糖氨基酸NADH丙酮酸丙酮酸ATP丙酮酸丙酮酸丙酮酸羧化酶草酰乙酸草酰乙酸(线粒体内)天冬氨酸苹果酸GTP天冬氨酸NADH草酰乙酸苹果酸磷酸烯醇式丙酮酸羧激酶磷酸烯醇式丙酮酸2-磷酸甘油酸(胞液)ATP3-磷酸甘油酸NADH1,3-二磷酸甘油酸甘油ATP3-磷酸甘油醛磷酸二羟丙酮3-磷酸甘油NADH1,6-双磷酸果糖果糖双磷酸酶6-磷酸果糖6-磷酸葡萄糖1-磷酸葡萄糖糖原葡萄糖-6-磷酸酶葡萄糖注意:1)糖异生过程中丙酮酸不能直接转变为磷酸烯醇式丙酮酸,需通过草酰乙酸的中间环节,由于草酰乙酸羧化酶仅存在于线粒体内,故胞液中的丙酮酸必须进入线粒体,才能羧化生成草酰乙酸。不过,草酰乙酸不能直接透过线粒体膜,需借助两种方式将其转运入胞液:一是经苹果酸途径,多数为以丙酮酸或生糖氨基酸为原料异生成糖时;另一种是经天冬氨酸途径,多数为乳酸为原料异生成糖时。2)在糖异生过程中,1,3-二磷酸甘油酸还原成3-磷酸甘油醛时,需NADH,当以乳酸为原料异生成糖时,其脱氢生成丙酮酸时已在胞液中产生了NADH以供运用;而以生糖氨基酸为原料进行糖异生时,NADH则必须由线粒体内提供,可来自脂酸β-氧化或三羧酸循环。3)甘油异生成糖耗一种ATP,同步也生成一种NADH2、调整2,6-双磷酸果糖的水平是肝内调整糖的分解或糖异生反应方向的重要信号,糖酵解加强,则糖异生减弱;反之亦然。3、生理意义1)空腹或饥饿时依赖氨基酸、甘油等异生成糖,以维持血糖水平恒定。2)补充肝糖原,摄入的相称一部分葡萄糖先分解成丙酮酸、乳酸等三碳化合物,后者再异生成糖原。合成糖原的这条途径称三碳途径。3)调整酸碱平衡,长期饥饿进,肾糖异生增强,有助于维持酸碱平衡。第2章脂类代谢一、甘油三酯的合成代谢合成部位:肝、脂肪组织、小肠,其中肝的合成能力最强。合成原料:甘油、脂肪酸1、甘油一酯途径(小肠粘膜细胞)2-甘油一酯脂酰CoA转移酶1,2-甘油二酯脂酰CoA转移酶甘油三酯脂酰CoA脂酰CoA2、甘油二酯途径(肝细胞及脂肪细胞)葡萄糖3-磷酸甘油脂酰CoA转移酶1脂酰-3-磷酸甘油脂酰CoA转移酶脂酰CoA脂酰CoA磷脂酸磷脂酸磷酸酶1,2甘油二酯脂酰CoA转移酶甘油三酯脂酰CoA二、甘油三酯的分解代谢1、脂肪的动员储存在脂肪细胞中的脂肪被脂肪酶逐渐水解为游离脂肪酸(FFA)及甘油并释放入血以供其他组织氧化运用的过程。甘油三酯激素敏感性甘油三酯脂肪酶甘油二酯甘油一酯甘油+FFA+FFA+FFAα-磷酸甘油磷酸二羟丙酮糖酵解或糖异生途径2、脂肪酸的β-氧化1)脂肪酸活化(胞液中)脂酸脂酰CoA合成酶脂酰CoA(含高能硫酯键)ATPAMP2)脂酰CoA进入线粒体脂酰CoA肉毒碱线肉毒碱脂酰CoA肉毒碱脂酰转移酶Ⅰ粒酶ⅡCoASH脂酰肉毒碱体脂酰肉毒碱CoASH3)脂肪酸β-氧化脂酰CoA进入线粒体基质后,进行脱氢、加水、再脱氢及硫解等四步持续反应,生成1分子比本来少2个碳原子的脂酰CoA、1分子乙酰CoA、1分子FADH2和1分子NADH。以上生成的比本来少2个碳原子的脂酰CoA,可再进行脱氢、加水、再脱氢及硫解反应。如此反复进行,以至彻底。4)能量生成以软脂酸为例,共进行7次β-氧化,生成7分子FADH2、7分子NADH及8分子乙酰CoA,即共生成(7*2)+(7*3)+(8*12)-2=1295)过氧化酶体脂酸氧化重要是使不能进入线粒体的廿碳,廿二碳脂酸先氧化成较短链脂酸,以便进入线粒体内分解氧化,对较短链脂酸无效。三、酮体的生成和运用组织特点:肝内生成肝外用。合成部位:肝细胞的线粒体中。酮体构成:乙酰乙酸、β-羟丁酸、丙酮。1、生成脂肪酸β-氧化2*乙酰CoA乙酰乙酰CoAHMGCoA合成酶羟甲基戊二酸单酰CoA(HMGCoA)HMGCoA裂解酶乙酰乙酸β-羟丁酸脱氢酶β-羟丁酸NADH丙酮CO22、运用1)β-羟丁酸ATP+HSCoA乙酰乙酸琥珀酰CoA乙酰乙酸硫激酶琥珀酰CoA转硫酶AMP乙酰乙酰CoA琥珀酸乙酰乙酰CoA硫解酶乙酰CoA三羧酸循环2)丙酮可随尿排出体外,部分丙酮可在一系列酶作用下转变为丙酮酸或乳酸,进而异生成糖。在血中酮体剧烈升高时,从肺直接呼出。四、脂酸的合成代谢1、软脂酸的合成合成部位:线粒体外胞液中,肝是体体合成脂酸的重要场所。合成原料:乙酰CoA、ATP﹑NADPH﹑HCO3-﹑Mn++等。合成过程:1)线粒体内的乙酰CoA不能自由透过线粒体内膜,重要通过柠檬酸-丙酮酸循环转移至胞液中。2)乙酰CoA乙酰CoA羧化酶丙二酰CoAATP3)丙二酰CoA通过酰基转移、缩合、还原、脱水、再还原等环节,碳原子由2增长至4个。通过7次循环,生成16个碳原子的软脂酸。更长碳链的脂酸则是对软脂酸的加工,使其碳链延长。在内质网脂酸碳链延长酶体系的作用下,一般可将脂酸碳链延长至二十四碳,以十八碳的硬脂酸最多;在线粒体脂酸延长酶体系的催化下,一般可延长脂酸碳链至24或26个碳原子,而以硬脂酸最多。2、不饱和脂酸的合成人体具有的不饱和脂酸重要有软油酸、油酸、亚油酸,亚麻酸及花生四烯酸等,前两种单不饱和脂酸可由人体自身合成,而后三种多不饱和脂酸,必须从食物摄取。五、前列腺素及其衍生物的生成细胞膜中的磷脂磷脂酶A2花生四烯酸PGH合成酶PGH2TXA2合成酶TXA2PGD2、PGE2、PGI2等脂过氧化酶氢过氧化廿碳四烯酸脱水酶白三烯(LTA4)六、甘油磷脂的合成与代谢1、合成除需ATP外,还需CTP参与。CTP在磷脂合成中尤其重要,它为合成CDP-乙醇胺、CDP-胆碱及CDP-甘油二酯等活化中间物所必需。1)甘油二酯途径CDP-乙醇胺CMP磷脂酰乙醇胺葡萄糖3-磷酸甘油磷脂酸甘油二酯转移酶(脑磷脂)磷脂酰胆碱CDP-胆碱CMP(卵磷脂)脑磷脂及卵磷脂重要通过此途径合成,这两类磷脂在体内含量最多。2)CDP-甘油二酯途径肌醇磷脂酰肌醇丝氨酸葡萄糖3-磷酸甘油磷脂酸CDP-甘油二酯合成酶磷脂酰丝氨酸CTPPPi磷脂酰甘油二磷脂酰甘油(心磷脂)此外,磷脂酰胆碱亦可由磷脂酰乙醇胺从S-腺苷甲硫氨酸获得甲基生成;磷脂酰丝氨酸可由磷脂酰乙醇胺羧化生成。2、降解生物体内存在能使甘油磷脂水解的多种磷脂酶类,根据其作用的键的特异性不一样,分为磷脂酶A1和A2,磷脂酶B,磷脂酶C和磷脂酶D。磷脂酶A2特异地催化磷酸甘油酯中2位上的酯键水解,生成多不饱和脂肪酸和溶血磷脂。后者在磷脂酶B作用,生成脂肪酸及甘油磷酸胆碱或甘油磷酸乙醇胺,再经甘油酸胆碱水解酶分解为甘油及磷酸胆碱。磷脂酶A1催化磷酸甘油酯1位上的酯键水解,产物是脂肪酸和溶血磷脂。七、胆固醇代谢1、合成合成部位:肝是重要场所,合成酶系存在于胞液及光面内质网中。合成原料:乙酰CoA(经柠檬酸-丙酮酸循环由线粒体转移至胞液中)、ATP、NADPH等。合成过程:1)甲羟戊酸的合成(胞液中)2*乙酰CoA乙酰乙酰CoAHMGCoAHMGCoA还原酶甲羟戊酸NADPH2)鲨烯的合成(胞液中)3)胆固醇的合成(滑面内质网膜上)合成调整:1)饥饿与饱食饥饿可克制肝合成胆固醇,相反,摄取高糖、高饱和脂肪膳食后,肝HMGCoA还原酶活性增长,胆固醇合成增长。2)胆固醇胆固醇可反馈克制肝胆固醇的合成。重要克制HMGCoA还原酶活性。3)激素胰岛素及甲状腺素能诱导肝HMGCoA还原酶的合成,增长胆固醇的合成。胰高血糖素及皮质醇则能克制并减少HMGCoA还原酶的活性,因而减少胆固醇的合成;甲状腺素除能增进合成外,又增进胆固醇在肝转变为胆汁酸,且后一作用较强,因而甲亢时患者血清胆固醇含量反而下降。2、转化1)胆固醇在肝中转化成胆汁酸是胆固醇在体内代谢的重要去路,基本环节为:胆酸胆固醇7α-羟化酶7α-羟胆固醇甘氨酸或牛磺酸结合型胆汁酸NADPH鹅脱氧胆酸胆酸肠道细菌7-脱氧胆酸甘氨酸牛磺酸鹅脱氧胆酸石胆酸2)转化为类固醇激素胆固醇是肾上腺皮质、睾丸,卵巢等内分泌腺合成及分泌类固醇激素的原料,如睾丸酮、皮质醇、雄激素、雌二醇及孕酮等。3)转化为7-脱氢胆固醇在皮肤,胆固醇可氧化为7-脱氢胆固醇,后者经紫外光照射转变为维生素D。3、胆固醇酯的合成细胞内游离胆固醇在脂酰胆固醇脂酰转移酶(ACAT)的催化下,生成胆固醇酯;血浆中游离胆固醇在卵磷脂胆固醇脂酰转移酶(LCAT)的催化下,生成胆固醇酯和溶血卵磷酯。八、血浆脂蛋白1、分类1)电泳法:α﹑前β﹑β及乳糜微粒2)超速离心法:乳糜微粒(含脂最多),极低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)和高密度脂蛋白(HDL),分别相称于电泳分离的CM﹑前β-脂蛋白﹑β-脂蛋白及α-脂蛋白等四类。2、构成血浆脂蛋白重要由蛋白质、甘油三酯、磷脂、胆固醇及其酯构成。乳糜微粒含甘油三酯最多,蛋白质至少,故密度最小;VLDL含甘油三酯亦多,但其蛋白质含量高于CM;LDL含胆固醇及胆固醇酯最多;含蛋白质最多,故密度最高。血浆脂蛋白中的蛋白质部分,基本功能是运载脂类,称载脂蛋白。HDL的载脂蛋白重要为apoA,LDL的载脂蛋白重要为apoB100,VLDL的载脂蛋白重要为apoB﹑apoC,CM的载脂蛋白重要为apoC。3、生理功用及代谢1)CM运送外源性甘油三酯及胆固醇的重要形式。成熟的CM具有apoCⅡ,可激活脂蛋白脂肪酶(LPL),LPL可使CM中的甘油三酯及磷脂逐渐水解,产生甘油、脂酸及溶血磷脂等,同步其表面的载脂蛋白连同表面的磷脂及胆固醇离开CM,逐渐变小,最终转变成为CM残粒。2)VLDL运送内源性甘油三酯的重要形式。VLDL的甘油三酯在LPL作用下,逐渐水解,同步其表面的apoC、磷脂及胆固醇向HDL转移,而HDL的胆固醇酯又转移到VLDL。最终只剩余胆固醇酯,转变为LDL。3)LDL转运肝合成的内源性胆固醇的重要形式。肝是降解LDL的重要器官。apoB100水解为氨基酸,其中的胆固醇酯被胆固醇酯酶水解为游离胆固醇及脂酸。游离胆固醇在调整细胞胆固醇代谢上具有重要作用:①克制内质网HMGCoA还原酶;②在转录水平上阴抑细胞LDL受体蛋白质的合成,减少对LDL的摄取;③激活ACAT的活性,使游离胆固醇酯化成胆固醇酯在胞液中储存。4)HDL逆向转运胆固醇。HDL表面的apoⅠ是LCAT的激活剂,LCAT可催化HDL生成溶血卵磷脂及胆固醇酯。九、高脂血症高脂蛋白血症分型分型脂蛋白变化血脂变化ⅠCM↑甘油三酯↑↑↑ⅡaLDL↑胆固醇↑↑ⅡbLDL﹑VLDL↑胆固醇↑↑甘油三酯↑↑ⅢIDL↑胆固醇↑↑甘油三酯↑↑ⅣVLDL↑甘油三酯↑↑ⅤVLDL﹑CM↑甘油三酯↑↑↑注:IDL是中间密度脂蛋白,为VLDL向LDL的过度状态。家族性高胆固醇血症的重要原因是LDL受体缺陷第三章氨基酸代谢一、营养必需氨基酸简记为:缬、异、亮、苏、蛋、赖、苯、色二、体内氨的来源和转运1、来源1)氨基酸经脱氨基作用产生的氨是体内氨的重要来源;2)由肠道吸取的氨;即肠内氨基酸在肠道细菌作用下产生的氨和肠道尿素经细菌尿素酶水解产生的氨。3)肾小管上皮细胞分泌的氨重要来自谷氨酰胺在谷氨酰胺酶的催化下水解生成的氨。2、转运1)丙氨酸-葡萄糖循环(肌肉)(血液)(肝)肌肉蛋白质葡萄糖葡萄糖葡萄糖尿素氨基酸糖糖尿素循环分异NH3解生NH3谷氨酸丙酮酸丙酮酸谷氨酸转氨酶转氨酶α-酮戊二酸丙氨酸丙氨酸丙氨酸α-酮戊二酸2)谷氨酰胺的运氨作用谷氨酰胺重要从脑、肌肉等组织向肝或肾运氨。氨与谷氨酰胺在谷氨酰胺合成酶催化下生成谷氨酰胺,由血液输送到肝或肾,经谷氨酰胺酶水解成谷氨酸和氨。可以认为,谷氨酰胺既是氨的解毒产物,也是氨的储存及运送形式。三、氨基酸的脱氨基作用1、转氨基作用转氨酶催化某一氨基酸的α-氨基转移到另一种α-酮酸的酮基上,生成对应的氨基酸;本来的氨基酸则转变成α-酮酸。既是氨基酸的分解代谢过程,也是体内某些氨基酸合成的重要途径。除赖氨酸、脯氨酸及羟脯氨酸外,体内大多数氨基酸可以参与转氨基作用。如:谷氨酸+丙酮酸谷丙转氨酶(ALT)α-酮戊二酸+丙氨酸谷氨酸+草酰乙酸谷草转氨酶(AST)α-酮戊二酸+天冬氨酸转氨酶的辅酶是维生素B6的磷酸酯,即磷酸吡哆醛。2、L-谷氨酸氧化脱氨基作用L-谷氨酸L-谷氨酸脱氢酶α-酮戊二酸+NH3NADH3、联合脱氨基作用氨基酸α-酮戊二酸NH3+NADH转氨酶谷氨酸脱氢酶α-酮酸谷氨酸NAD+4、嘌呤核苷酸循环上述联合脱氨基作用重要在肝、肾等组织中进行。骨骼肌和心肌中重要通过嘌呤核苷酸循环脱去氨基。氨基酸α-酮戊二酸天冬氨酸次黄嘌呤核苷酸NH3GTP(IMP)腺苷酸代琥珀酸腺嘌呤核苷酸(AMP)延胡索酸α-酮酸L-谷氨酸草酰乙酸苹果酸5、氨基酸脱氨基后生成的α-酮酸可以转变成糖及脂类,在体内可以转变成糖的氨基酸称为生糖氨基酸;能转变成酮体者称为生酮氨基酸;两者兼有者称为生糖兼生酮氨基酸。只要记住生酮氨基酸包括:亮、赖;生糖兼生酮氨基酸包括异亮、苏、色、酪、苯丙;其他为生糖氨基酸。四、氨基酸的脱羧基作用1、L-谷氨酸L-谷氨酸脱羧酶γ-氨基丁酸(GABA)GABA为克制性神经递质。2、L-半胱氨酸磺酸丙氨酸磺酸丙氨酸脱羧酶牛磺酸牛磺酸是结合型胆汁酸的构成成分。3、L-组氨酸组氨酸脱羧酶组胺组胺是一种强烈的血管舒张剂,并能增长毛细血管的通透性。4、色氨酸色氨酸羟化酶5-羟色氨酸5-羟色氨酸脱羧酶5-羟色胺(5-HT)脑内的5-羟色胺可作为神经递质,具有克制作用;在外周组织,有收缩血管作用。5、L-鸟氨酸鸟氨酸脱羧酶腐胺精脒精胺脱羧基SAM脱羧基SAM精脒与精胺是调整细胞生长的重要物质。合称为多胺类物质。五、一碳单位一碳单位来源于组、色、甘、丝,体内的一碳单位有:甲基、甲烯基、甲炔基、甲酰基及亚氨甲基,CO2不属于一碳单位。四氢叶酸是一碳单位代谢的辅酶。重要生理功用是作为合成嘌呤及嘧啶的原料。如N10-CHO-FH4与N5,H10=CH-FH4分别提供嘌呤合成时C2与C8的来源;N5,N10-CH2-FH4提供胸苷酸合成时甲基的来源。由此可见,一碳单位将氨基酸与核酸代谢亲密联络起来。六、芳香族氨基酸(色、酪、苯丙)的代谢1、苯丙氨酸苯丙氨酸羟化酶酪氨酸黑色素细胞的酪氨酸酶多巴酪氨酸羟化酶多巴黑色素多巴脱羧酶多巴胺SAM去甲肾上腺素儿茶酚胺肾上腺素苯酮酸尿症:当苯丙氨酸羟化酶先天性缺乏时,苯丙氨酸不能转变为酪氨酸,体内苯丙氨酸蓄积,并经转氨基作用生成苯丙酮酸,再深入转变成苯乙酸等衍生物。此时尿中出现大量苯丙酮酸等代谢产物,称为苯酮酸尿症。白化病:人体缺乏酪氨酸酶,黑色素合成障碍,皮肤、毛发等发白,称为白化病。2、色氨酸1)生成5-羟色胺2)生成一碳单位3)可分解产生尼克酸,这是体内合成维生素的特例。七、含硫氨基酸(甲硫、半胱、胱)代谢1、甲硫氨酸S-腺苷甲硫氨酸(SAM)ATPPPiSAM中的甲基为活性甲基,通过转甲基作用可以生成多种含甲基的重要生理活性物质。SAM是体内最重要的甲基直接供应体。2、甲硫氨酸循环甲硫氨酸SAM甲基转移酶S-腺苷同型半胱氨酸RHRCH3甲硫氨酸合成酶同型半胱氨酸FH4N5-CH3-FH4N5-CH3-FH4可当作体内甲基的间接供体,甲硫氨酸合成酶辅酶为维生素B12。3、肌酸的合成肌酸以甘氨酸为骨架,由精氨酸提供脒基,SAM供应甲基而合成。在肌酸激酶催化下,肌酸转变成磷酸肌酸,并储存ATP的高能磷酸键。4、体内硫酸根重要来源于半胱氨酸,一部分以无机盐形式随尿排出,另一部分则经ATP活化成活性硫酸根,即3'-磷酸腺苷-5'-磷酸硫酸(PAPS)。八、氨基酸衍生的重要含氮化合物化合物氨基酸前体嘌呤碱天冬氨酸、谷氨酰胺、甘氨酸嘧啶碱天冬氨酸血红素、细胞色素甘氨酸肌酸、磷酸肌酸甘氨酸、精氨酸、蛋氨酸尼克酸色氨酸儿茶酚胺类苯丙氨酸、酪氨酸甲状腺素酪氨酸黑色素苯丙氨酸、酪氨酸精胺、精脒蛋氨酸、鸟氨酸九、尿素的生成线粒体NH3+CO2+H2O2*ATP氨基甲酰磷酸合成酶Ⅰ(CSP-Ⅰ)2*ADPN-酰谷氨酸(AGA),Mg++氨基甲酰磷酸Pi胞液鸟氨酸瓜氨酸ATP瓜氨酸天冬氨酸α-酮戊二酸氨基酸AMPASS鸟氨酸精氨酸代琥珀酸草酰乙酸谷氨酸α-酮酸尿素苹果酸精氨酸延胡索酸ASS:精氨酸代琥珀酸合成酶尿素分子中的2个氮原子,1个来自氨,另1个来自天冬氨酸,而天冬氨酸又可由其他氨基酸通过转氨基作用而生成。线粒体中以氨为氮源,通过CSP-Ⅰ合成氨甲酰磷酸,并深入合成尿素;在胞液中以谷氨酰胺为氮源,通过CSP-Ⅱ,催化合成氨基甲酰磷酸,并深入参与嘧啶的合成。CSP-Ⅰ的活性可用为肝细胞分化程度的指标之一;CSP-Ⅱ的活性可作为细胞增殖程度的指标之一。氨基甲酰磷酸的生成是尿素合成的重要环节。AGA是CSP-Ⅰ的变构激动剂,精氨酸是AGA合成酶的激活剂。第3章核苷酸代谢一、嘌呤核苷酸代谢1、合成原料CO2甘氨酸C6N7天冬氨酸N1C5甲酰基(一碳单位)C2C4CN3N9谷氨酰胺2、合成过程1)从头合成:5-磷酸核糖PRPP合成酶磷酸核糖焦磷酸PRPP酰胺转移酶5-磷酸核糖胺ATPAMP(PRPP)ATPAMP次黄嘌呤核苷酸(IMP)GTPGMP黄嘌呤核苷酸(XMP)嘌呤核苷酸是在磷酸核糖分子上逐渐合成的,而不是首先单独合成嘌呤碱然后再与磷酸核糖结合而成的。2)补救合成:运用体内游离的嘌呤或嘌呤核苷,通过简朴的反应过程,合成嘌呤核苷酸。生理意义为:首先在于可以节省从头合成时能量和某些氨基酸的消耗;另首先,体内某些组织器官,如脑、骨髓等由于缺乏从头合成的酶体系,只能进行补救合成。3、脱氧核苷酸的生成脱氧核苷酸的生成是在二磷酸核苷水平上,由核糖核苷酸还原酶催化,核糖核苷酸C2上的羟基被氢取代生成。4、分解产物AMP次黄嘌呤黄嘌呤氧化酶黄嘌呤黄嘌呤氧化酶尿酸GMP鸟嘌呤人体内嘌呤碱最终分解生成尿酸,随尿排出体外。痛风症患者血中尿酸含量升高。临床上常用别嘌呤醇治疗痛风症,这是由于别嘌呤醇与次黄嘌呤构造类似,可克制黄嘌呤氧化酶,从而克制尿酸的生成。5、抗代谢物第九章核苷酸代谢一、核苷酸类物质的生理功用:核苷酸类物质在人体内的生理功用重要有:①作为合成核酸的原料:如用ATP,GTP,CTP,UTP合成RNA,用dATP,dGTP,dCTP,dTTP合成DNA。②作为能量的贮存和供应形式:除ATP之外,尚有GTP,UTP,CTP等。③参与代谢或生理活动的调整:如环核苷酸cAMP和cGMP作为激素的第二信使。④参与构成酶的辅酶或辅基:如在NAD+,NADP+,FAD,FMN,CoA中均具有核苷酸的成分。⑤作为代谢中间物的载体:如用UDP携带糖基,用CDP携带胆碱,胆胺或甘油二酯,用腺苷携带蛋氨酸(SAM)等。二、嘌呤核苷酸的合成代谢:1.从头合成途径:运用某些简朴的前体物,如5-磷酸核糖,氨基酸,一碳单位及CO2等,逐渐合成嘌呤核苷酸的过程称为从头合成途径。这一途径重要见于肝脏,另一方面为小肠和胸腺。嘌呤环中各原子分别来自下列前体物质:Asp→N1;N10-CHOFH4→C2;Gln→N3和N9;CO2→C6;N5,N10=CH-FH4→C8;Gly→C4、C5和N7。合成过程可分为三个阶段:⑴次黄嘌呤核苷酸的合成:在磷酸核糖焦磷酸合成酶的催化下,消耗ATP,由5'-磷酸核糖合成PRPP(1'-焦磷酸-5'-磷酸核糖)。然后再通过大概10步反应,合成第一种嘌呤核苷酸--次黄苷酸(IMP)。⑵腺苷酸及鸟苷酸的合成:IMP在腺苷酸代琥珀酸合成酶的催化下,由天冬氨酸提供氨基合成腺苷酸代琥珀酸(AMP-S),然后裂解产生AMP;IMP也可在IMP脱氢酶的催化下,以NAD+为受氢体,脱氢氧化为黄苷酸(XMP),后者再在鸟苷酸合成酶催化下,由谷氨酰胺提供氨基合成鸟苷酸(GMP)。⑶三磷酸嘌呤核苷的合成:AMP/GMP被深入磷酸化,最终生成ATP/GTP,作为合成RNA的原料。ADP/GDP则可在核糖核苷酸还原酶的催化下,脱氧生成dADP/dGDP,然后再磷酸化为dATP/dGTP,作为合成DNA的原料。2.补救合成途径:又称再运用合成途径。指运用分解代谢产生的自由嘌呤碱合成嘌呤核苷酸的过程。这一途径可在大多数组织细胞中进行。其反应为:A+PRPP→AMP;G/I+PRPP→GMP/IMP。3.抗代谢药物对嘌呤核苷酸合成的克制:可以克制嘌呤核苷酸合成的某些抗代谢药物,一般是属于嘌呤、氨基酸或叶酸的类似物,重要通过对代谢酶的竞争性克制作用,来干扰或克制嘌呤核苷酸的合成,因而具有抗肿瘤治疗作用。在临床上应用较多的嘌呤核苷酸类似物重要是6-巯基嘌呤(6-MP)。6-MP的化学构造与次黄嘌呤类似,因而可以克制IMP转变为AMP或GMP,从而干扰嘌呤核苷酸的合成。三、嘌呤核苷酸的分解代谢:嘌呤核苷酸的分解首先是在核苷酸酶的催化下,脱去磷酸生成嘌呤核苷,然后再在核苷酶的催化下分解生成嘌呤碱,最终产生的I和X经黄嘌呤氧化酶催化氧化生成终产物尿酸。痛风症患者由于体内嘌呤核苷酸分解代谢异常,可致血中尿酸水平升高,以尿酸钠晶体沉积于软骨、关节、软组织及肾脏,临床上体现为皮下结节,关节疼痛等。可用别嘌呤醇予以治疗。四、嘧啶核苷酸的合成代谢:1.从头合成途径:指运用某些简朴的前体物逐渐合成嘧啶核苷酸的过程。该过程重要在肝脏的胞液中进行。嘧啶环中各原子分别来自下列前体物:CO2→C2;Gln→N3;Asp→C4、C5、C6、N1。嘧啶核苷酸的重要合成环节为:⑴尿苷酸的合成:在氨基甲酰磷酸合成酶Ⅱ的催化下,以Gln,CO2,ATP等为原料合成氨基甲酰磷酸。后者在天冬氨酸转氨甲酰酶的催化下,转移一分子天冬氨酸,从而合成氨甲酰天冬氨酸,然后再经脱氢、脱羧、环化等反应,合成第一种嘧啶核苷酸,即UMP。⑵胞苷酸的合成:UMP经磷酸化后生成UTP,再在胞苷酸合成酶的催化下,由Gln提供氨基转变为CTP。⑶脱氧嘧啶核苷酸的合成:①CTP→CDP→dCDP→dCTP。②dCDP→dCMP→dUMP→dTMP→dTDP→dTTP。胸苷酸合成酶催化dUMP甲基化,甲基供体为N5,N10-亚甲基四氢叶酸。2.补救合成途径:由分解代谢产生的嘧啶/嘧啶核苷转变为嘧啶核苷酸的过程称为补救合成途径。以嘧啶核苷的补救合成途径较重要。重要反应为:UR/CR+ATP→UMP/CMP;TdR+ATP→dTMP。3.抗代谢药物对嘧啶核苷酸合成的克制:可以克制嘧啶核苷酸合成的抗代谢药物也是某些嘧啶核苷酸的类似物,通过对酶的竞争性克制而干扰或克制嘧啶核苷酸的合成。重要的抗代谢药物是5-氟尿嘧啶(5-FU)。5-FU在体内可转变为F-dUMP,其构造与dUMP相似,可竞争性克制胸苷酸合成酶的活性,从而克制胸苷酸的合成。五、嘧啶核苷酸的分解代谢:嘧啶核苷酸可首先在核苷酸酶和核苷磷酸化酶的催化下,除去磷酸和核糖,产生的嘧啶碱可在体内深入分解代谢。不一样的嘧啶碱其分解代谢的产物不一样,其降解过程重要在肝脏进行。胞嘧啶和尿嘧啶降解的终产物为(β-丙氨酸+NH3+CO2);胸腺嘧啶降解的终产物为(β-氨基异丁酸+NH3+CO2)。第十一章DNA的生物合成一、遗传学的中心法则和反中心法则:DNA通过复制将遗传信息由亲代传递给子代;通过转录和翻译,将遗传信息传递给蛋白质分子,从而决定生物的体现型。DNA的复制、转录和翻译过程就构成了遗传学的中心法则。但在少数RNA病毒中,其遗传信息贮存在RNA中。因此,在这些生物体中,遗传信息的流向是RNA通过复制,将遗传信息由亲代传递给子代;通过反转录将遗传信息传递给DNA,再由DNA通过转录和翻译传递给蛋白质,这种遗传信息的流向就称为反中心法则。二、DNA复制的特点:1.半保留复制:DNA在复制时,以亲代DNA的每一股作模板,合成完全相似的两个双链子代DNA,每个子代DNA中都具有一股亲代DNA链,这种现象称为DNA的半保留复制(semiconservativereplication)。DNA以半保留方式进行复制,是在1958年由M.Meselson和F.Stahl所完毕的试验所证明。2.有一定的复制起始点:DNA在复制时,需在特定的位点起始,这是某些具有特定核苷酸排列次序的片段,即复制起始点(复制子)。在原核生物中,复制起始点一般为一种,而在真核生物中则为多种。3.需要引物(primer):DNA聚合酶必须以一段具有3'端自由羟基(3'-OH)的RNA作为引物,才能开始聚合子代DNA链。RNA引物的大小,在原核生物中一般为50~100个核苷酸,而在真核生物中约为10个核苷酸。4.双向复制:DNA复制时,以复制起始点为中心,向两个方向进行复制。但在低等生物中,也可进行单向复制。5.半不持续复制:由于DNA聚合酶只能以5'→3'方向聚合子代DNA链,因此两条亲代DNA链作为模板聚合子代DNA链时的方式是不一样的。以3'→5'方向的亲代DNA链作模板的子代链在聚合时基本上是持续进行的,这一条链被称为领头链(leadingstrand)。而以5'→3'方向的亲代DNA链为模板的子代链在聚合时则是不持续的,这条链被称为随从链(laggingstrand)。DNA在复制时,由随从链所形成的某些子代DNA短链称为冈崎片段(Okazakifragment)。冈崎片段的大小,在原核生物中约为1000~个核苷酸,而在真核生物中约为100个核苷酸。三、DNA复制的条件:1.底物:以四种脱氧核糖核酸(deoxynucleotidetriphosphate)为底物,即dATP,dGTP,dCTP,dTTP。2.模板(template):以亲代DNA的两股链解开后,分别作为模板进行复制。3.引起体(primosome)和RNA引物(primer):引起体由引起前体与引物酶(primase)组装而成。引起前体是由若干蛋白因子聚合而成的复合体;引物酶本质上是一种依赖DNA的RNA聚合酶(DDRP)。4.DNA聚合酶(DNAdependentDNApolymerase,DDDP):⑴种类和生理功能:在原核生物中,目前发现的DNA聚合酶有三种,分别命名为DNA聚合酶Ⅰ(polⅠ),DNA聚合酶Ⅱ(polⅡ),DNA聚合酶Ⅲ(polⅢ),这三种酶都属于具有多种酶活性的多功能酶。polⅠ为单一肽链的大分子蛋白质,具有5'→3'聚合酶活性、3'→5'外切酶活性和5'→3'外切酶的活性;其功能重要是清除引物、弥补缺口以及修复损伤。polⅡ具有5'→3'聚合酶活性和3'→5'外切酶活性,其功能不明。polⅢ是由十种亚基构成的不对称二聚体,具有5'→3'聚合酶活性和3'→5'外切酶活性,与DNA复制功能有关。在真核生物中,目前发现的DNA聚合酶有五种。其中,参与染色体DNA复制的是polα(延长随从链)和polδ(延长领头链),参与线粒体DNA复制的是polγ,polε与DNA损伤修复、校读和弥补缺口有关,polβ只在其他聚合酶无活性时才发挥作用。⑵DNA复制的保真性:为了保证遗传的稳定,DNA的复制必须具有高保真性。DNA复制时的保真性重要与下列原因有关:①遵守严格的碱基配对规律;②在复制时对碱基的对的选择;③对复制过程中出现的错误及时进行校正。5.DNA连接酶(DNAligase):DNA连接酶可催化两段DNA片段之间磷酸二酯键的形成,而使两段DNA连接起来。该酶催化的条件是:①需一段DNA片段具有3'-OH,而另一段DNA片段具有5'-Pi基;②未封闭的缺口位于双链DNA中,即其中有一条链是完整的;③需要消耗能量,在原核生物中由NAD+供能,在真核生物中由ATP供能。6.单链DNA结合蛋白(singlestrandbindingprotein,SSB):又称螺旋反稳蛋白(HDP)。这是某些可以与单链DNA结合的蛋白质因子。其作用为:①稳定单链DNA,便于以其为模板复制子代DNA;②保护单链DNA,防止核酸酶的降解。7.解螺旋酶(unwindingenzyme):又称解链酶或rep蛋白,是用于解开DNA双链的酶蛋白,每解开一对碱基,需消耗两分子ATP。8.拓扑异构酶(topoisomerase):拓扑异构酶可将DNA双链中的一条链或两条链切断,松开超螺旋后再将DNA链连接起来,从而防止出现链的缠绕。四、DNA生物合成过程:1.复制的起始:⑴预引起:①解旋解链,形成复制叉:由拓扑异构酶和解链酶作用,使DNA的超螺旋及双螺旋构造解开,形成两条单链DNA。单链DNA结合蛋白(SSB)结合在单链DNA上,形成复制叉。DNA复制时,局部双螺旋解开形成两条单链,这种叉状构造称为复制叉。②引起体组装:由引起前体蛋白因子识别复制起始点,并与引起酶一起组装形成引起体。⑵引起:在引起酶的催化下,以DNA链为模板,合成一段短的RNA引物。2.复制的延长:⑴聚合子代DNA:由DNA聚合酶催化,以亲代DNA链为模板,从5'→3'方向聚合子代DNA链。⑵引起体移动:引起体向前移动,解开新的局部双螺旋,形成新的复制叉,随从链重新合成RNA引物,继续进行链的延长。3.复制的终止:⑴清除引物,弥补缺口:RNA引物被水解,缺口由DNA链弥补,直到剩余最终一种磷酸酯键的缺口。⑵连接冈崎片段:在DNA连接酶的催化下,将冈崎片段连接起来,形成完整的DNA长链。⑶真核生物端粒(telomere)的形成:端粒是指真核生物染色体线性DNA分子末端的构造部分,一般膨大成粒状。线性DNA在复制完毕后,其末端由于引物RNA的水解而也许出现缩短。故需要在端粒酶(telomerase)的催化下,进行延长反应。端粒酶是一种RNA-蛋白质复合体,它可以其RNA为模板,通过逆转录过程对末端DNA链进行延长。五、DNA的损伤:由自发的或环境的原因引起DNA一级构造的任何异常的变化称为DNA的损伤。常见的DNA的损伤包括碱基脱落、碱基修饰、交联,链的断裂,重组等。引起DNA损伤的原因有:1.自发原因:(1)自发脱碱基:由于N-糖苷键的自发断裂,引起嘌呤或嘧啶碱基的脱落。(2)自发脱氨基:C自发脱氨基可生成U,A自发脱氨基可生成I。(3)复制错配:由于复制时碱基配对错误引起的损伤。2.物理原因:由紫外线、电离辐射、X射线等引起的DNA损伤。其中,X射线和电离辐射常常引起DNA链的断裂,而紫外线常常引起嘧啶二聚体的形成,如TT,TC,CC等二聚体。3.化学原因:(1)脱氨剂:如亚硝酸与亚硝酸盐,可加速C脱氨基生成U,A脱氨基生成I。(2)烷基化剂:这是一类带有活性烷基的化合物,可提供甲基或其他烷基,引起碱基或磷酸基的烷基化,甚至可引起邻近碱基的交联。(3)DNA加合剂:如苯并芘,在体内代谢后生成四羟苯并芘,与嘌呤共价结合引起损伤。(4)碱基类似物:如5-FU,6-MP等,可掺入到DNA分子中引起损伤或突变。(5)断链剂:如过氧化物,含巯基化合物等,可引起DNA链的断裂。六、DNA突变的类型:1.点突变:转换--相似类型碱基的取代。颠换--不一样类型碱基的取代。插入--增长一种碱基。缺失--减少一种碱基
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 15561-2024数字指示轨道衡
- 农业副产品高值化利用趋势
- 高一化学教案:专题第二单元第一课时化学反应中的热量变化(一)
- 2024高中化学第四章生命中的基础有机化学物质1油脂课时作业含解析新人教版选修5
- 2024高中地理课时作业8区域工业化与城市化-以我国珠江三角洲地区为例含解析新人教版必修3
- 2024高中语文第1单元论语蚜第1课天下有道丘不与易也练习含解析新人教版选修先秦诸子蚜
- 2024高中语文第五单元散而不乱气脉中贯文与可筼筜谷偃竹记训练含解析新人教版选修中国古代诗歌散文欣赏
- 2024高中语文精读课文一第2课3鲁迅:深刻与伟大的另一面是平和三课堂练习含解析新人教版选修中外传记蚜
- 2024高考地理一轮复习第七单元自然环境对人类活动的影响练习含解析
- 2025新人教版英语七年级下不规则动词表
- 2025新北师大版英语七年级下单词表
- 《智慧城市概述》课件
- 2024年北京市家庭教育需求及发展趋势白皮书
- GB/T 45089-20240~3岁婴幼儿居家照护服务规范
- 中建道路排水工程施工方案
- 拆机移机合同范例
- 智能停车充电一体化解决方案
- 化学验室安全培训
- 天书奇谭美术课件
- GB/T 18916.15-2024工业用水定额第15部分:白酒
- 部编四年级道德与法治下册全册教案(含反思)
评论
0/150
提交评论