2024届湖南省娄底市双峰县九年级数学第一学期期末统考模拟试题含解析_第1页
2024届湖南省娄底市双峰县九年级数学第一学期期末统考模拟试题含解析_第2页
2024届湖南省娄底市双峰县九年级数学第一学期期末统考模拟试题含解析_第3页
2024届湖南省娄底市双峰县九年级数学第一学期期末统考模拟试题含解析_第4页
2024届湖南省娄底市双峰县九年级数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省娄底市双峰县九年级数学第一学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A. B. C. D.2.某班的同学想测量一教楼AB的高度.如图,大楼前有一段斜坡BC,已知BC的长为16米,它的坡度i=1:3.在离C点45米的D处,测得一教楼顶端A的仰角为37°,则一教楼AB的高度约()米(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,A.44.1B.39.8C.36.1D.25.93.将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A. B.C. D.4.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+55.正六边形的边心距与半径之比为()A. B. C. D.6.如图,在中,平分于.如果,那么等于()A. B. C. D.7.目前,支付宝平台入驻了不少的理财公司,推出了一些理财产品.李阿姨用10000元本金购买了一款理财产品,到期后自动续期,两期结束后共收回本息10926元设此款理财产品每期的平均收益率为x,则根据题意可得方程()A. B.C. D.8.抛物线的顶点坐标是()A. B. C. D.9.下列图形中是中心对称图形又是轴对称图形的是()A. B. C. D.10.如图,在中,,则AC的长为()A.5 B.8 C.12 D.1311.已知(,),下列变形错误的是()A. B. C. D.12.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.5万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6(1+x)=8.5B.6(1+2x)=8.5C.6(1+x)2=8.5D.6+6(1+x)+6(1+x)2=8.5二、填空题(每题4分,共24分)13.如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=,那么BC=____________.14.已知tan(α+15°)=,则锐角α的度数为______°.15.在中,,为的中点,则的长为__________.16.如图,一组等距的平行线,点A、B、C分别在直线l1、l6、l4上,AB交l3于点D,AC交l3于点E,BC交于l5点F,若△DEF的面积为1,则△ABC的面积为_____.17.张老师在讲解复习《圆》的内容时,用投影仪屏幕展示出如下内容:如图,内接于,直径的长为2,过点的切线交的延长线于点.张老师让同学们添加条件后,编制一道题目,并按要求完成下列填空.(1)在屏幕内容中添加条件,则的长为______.(2)以下是小明、小聪的对话:小明:我加的条件是,就可以求出的长小聪:你这样太简单了,我加的是,连结,就可以证明与全等.参考上面对话,在屏幕内容中添加条件,编制一道题目(此题目不解答,可以添线、添字母).______.18.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB的长为x米,则菜园的面积y(平方米)与x(米)的函数表达式为________.(不要求写出自变量x的取值范围)三、解答题(共78分)19.(8分)如图,点是正方形边.上一点,连接,作于点,于点,连接.(1)求证:;(2)己知,四边形的面积为,求的值.20.(8分)计算(1)(2)21.(8分)如图,于点是上一点,是以为圆心,为半径的圆.是上的点,连结并延长,交于点,且.(1)求证:是的切线(证明过程中如可用数字表示的角,建议在图中用数字标注后用数字表示);(2)若的半径为5,,求线段的长.22.(10分)如图,PA,PB是圆O的切线,A,B是切点,AC是圆O的直径,∠BAC=25°,求∠P的度数.23.(10分)在平面直角坐标系中,已知P(,),R(,)两点,且,,若过点P作轴的平行线,过点R作轴的平行线,两平行线交于一点S,连接PR,则称△PRS为点P,R,S的“坐标轴三角形”.若过点R作轴的平行线,过点P作轴的平行线,两平行线交于一点,连接PR,则称△RP为点R,P,的“坐标轴三角形”.右图为点P,R,S的“坐标轴三角形”的示意图.(1)已知点A(0,4),点B(3,0),若△ABC是点A,B,C的“坐标轴三角形”,则点C的坐标为;(2)已知点D(2,1),点E(e,4),若点D,E,F的“坐标轴三角形”的面积为3,求e的值.(3)若的半径为,点M(,4),若在上存在一点N,使得点N,M,G的“坐标轴三角形”为等腰三角形,求的取值范围.24.(10分)我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量(千克)与销售单价(元)符合一次函数关系,如图所示.(1)求与之间的函数关系式,并写出自变量的取值范围;(2)若在销售过程中每天还要支付其他费用500元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?25.(12分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.26.某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高售价减少销售量的办法增加利润,如果这种商品每件的售价每提高0.5元,其销售量就减少10件,问:①应将每件售价定为多少元,才能使每天的利润为640元?②店主想要每天获得最大利润,请你帮助店主确定商品售价并指出每天的最大利润W为多少元?

参考答案一、选择题(每题4分,共48分)1、C【解题分析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.详解:从左边看竖直叠放2个正方形.故选:C.点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.2、C【解题分析】延长AB交直线DC于点F,在Rt△BCF中利用坡度的定义求得CF的长,则DF即可求得,然后在直角△ADF中利用三角函数求得AF的长,进而求得AB的长.【题目详解】延长AB交直线DC于点F.∵在Rt△BCF中,BFCF∴设BF=k,则CF=3k,BC=2k.又∵BC=16,∴k=8,∴BF=8,CF=83.∵DF=DC+CF,∴DF=45+83.∵在Rt△ADF中,tan∠ADF=AFDF∴AF=tan37°×(45+83)≈44.13(米),∵AB=AF-BF,∴AB=44.13-8≈36.1米.故选C.【题目点拨】本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解,注意利用两个直角三角形的公共边求解是解答此类题型的常用方法.3、A【分析】抛物线平移的规律是:x值左加右减,y值上加下减,根据平移的规律解答即可.【题目详解】∵将抛物线向上平移3个单位,再向左平移2个单位,∴,故选:A.【题目点拨】此题考查抛物线的平移规律,正确掌握平移的变化规律由此列函数关系式是解题的关键.4、A【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【题目详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),所以,平移后的抛物线的解析式为y=(x+2)2﹣1.故选A.【题目点拨】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.5、C【分析】我们可设正六边形的边长为2,欲求半径、边心距之比,我们画出图形,通过构造直角三角形,解直角三角形即可得出.【题目详解】如右图所示,边长AB=2;又该多边形为正六边形,故∠OBA=60°,在Rt△BOG中,BG=1,OG=,所以AB=2,即半径、边心距之比为.故选:C.【题目点拨】此题主要考查正多边形边长的计算问题,要求学生熟练掌握应用.6、D【分析】先根据直角三角形的性质和角平分线的性质可得,再根据等边对等角可得,最后在中,利用直角三角形的性质即可得.【题目详解】平分则在中,故选:D.【题目点拨】本题考查了等腰三角形的性质、角平分线的性质、直角三角形的性质:(1)两锐角互余;(2)所对的直角边等于斜边的一半;根据等腰三角形的性质得出是解题关键.7、B【分析】根据题意,找出等量关系列出方程,即可得到答案.【题目详解】解:根据题意,设此款理财产品每期的平均收益率为x,则;故选择:B.【题目点拨】本题考查了一元二次方程的应用——增长率问题,解题的关键是找到等量关系,列出方程.8、A【分析】根据二次函数的性质,利用顶点式即可得出顶点坐标.【题目详解】解:∵抛物线,

∴抛物线的顶点坐标是:(1,3),

故选:A.【题目点拨】本题主要考查了利用二次函数顶点式求顶点坐标.能根据二次函数的顶点式找出抛物线的对称轴及顶点坐标是解题的关键.9、A【分析】根据中心对称图形和轴对称图形的性质对各项进行判断即可.【题目详解】根据中心对称图形和轴对称图形的性质,只有下图符合故答案为:A.【题目点拨】本题考查了中心对称图形和轴对称图形,掌握中心对称图形和轴对称图形的定义和性质是解题的关键.10、A【分析】利用余弦的定义可知,代入数据即可求出AC.【题目详解】∵∴故选A.【题目点拨】本题考查根据余弦值求线段长度,熟练掌握余弦的定义是解题的关键.11、B【分析】根据两内项之积等于两外项之积对各项分析判断即可得解.【题目详解】解:由,得出,3b=4a,A.由等式性质可得:3b=4a,正确;B.由等式性质可得:4a=3b,错误;C.由等式性质可得:3b=4a,正确;D.由等式性质可得:4a=3b,正确.故答案为:B.【题目点拨】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.12、C【解题分析】由题意可得9月份的快递总件数为6(1+x)万件,则10月份的快递总件数为6(1+x)(1+x)万件.【题目详解】解:由题意可得6(1+x)2=8.5,故选择C.【题目点拨】理解后一个月的快递数量是以前一个月的快递数量为基础的是解题关键.二、填空题(每题4分,共24分)13、2【分析】根据垂径定理得出AN=CN,AM=BM,根据三角形的中位线性质得出BC=2MN,即可得出答案.【题目详解】解:∵OM⊥AB,ON⊥AC,OM过O,ON过O,

∴AN=CN,AM=BM,

∴BC=2MN,

∵MN=,∴BC=2,故答案为:2.【题目点拨】本题考查了垂径定理和三角形的中位线性质,能熟记知识点的内容是解此题的关键,注意:垂直于弦的直径平分弦.14、15【分析】直接利用特殊角的三角函数值求出答案.【题目详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【题目点拨】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.15、5【分析】先根据勾股定理的逆定理判定△ABC是直角三角形,再根据斜中定理计算即可得出答案.【题目详解】∵∴∴△ABC为直角三角形,AB为斜边又为的中点∴故答案为5.【题目点拨】本题考查的是勾股定理的逆定理以及直角三角形的斜中定理,解题关键是根据已知条件判断出三角形是直角三角形.16、【分析】在三角形中由同底等高,同底倍高求出,根据平行线分线段成比例定理,求出,最后由三角形的面积的和差法求得.【题目详解】连接DC,设平行线间的距离为h,AD=2a,如图所示:∵,,∴S△DEF=S△DEA,又∵S△DEF=1,∴S△DEA=1,同理可得:,又∵S△ADC=S△ADE+S△DEC,∴,又∵平行线是一组等距的,AD=2a,∴,∴BD=3a,设C到AB的距离为k,∴ak,,∴,又∵S△ABC=S△ADC+S△BDC,∴.故答案为:.【题目点拨】本题综合考查了平行线分线段成比例定理,平行线间的距离相等,三角形的面积求法等知识,重点掌握平行线分线段成比例定理,难点是作辅助线求三角形的面积.17、3,求的长【分析】(1)连接OC,如图,利用切线的性质得∠OCD=90°,再根据含30°的直角三角形三边的关系得到OD=2,然后计算OA+OD即可;

(2)添加∠DCB=30°,求ACAC的长,利用圆周角定理得到∠ACB=90°,再证明∠A=∠DCB=30°,然后根据含30°的直角三角形三边的关系求AC的长.【题目详解】解:(1)连接OC,如图,

∵CD为切线,

∴OC⊥CD,

∴∠OCD=90°,

∵∠D=30°,

∴OD=2OC=2,

∴AD=AO+OD=1+2=3;

(2)添加∠DCB=30°,求AC的长,

解:∵AB为直径,

∴∠ACB=90°,

∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,

∴∠ACO=∠DCB,

∵∠ACO=∠A,

∴∠A=∠DCB=30°,

在Rt△ACB中,BC=AB=1,

∴AC==.故答案为3;,求的长.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,得出垂直关系.18、y=-x2+15x【分析】由AB边长为x米,根据已知可以推出BC=(30-x),然后根据矩形的面积公式即可求出函数关系式.【题目详解】∵AB边长为x米,而菜园ABCD是矩形菜园,∴BC=(30-x),菜园的面积=AB×BC=(30-x)•x,则菜园的面积y(单位:米2)与x(单位:米)的函数关系式为:y=-x2+15x,故答案为y=-x2+15x.【题目点拨】本题考查了二次函数的应用,正确分析,找准各量间的数量关系列出函数关系式是解题的关键.三、解答题(共78分)19、(1)见解析;(2)【分析】(1)首先由正方形的性质得出BA=AD,∠BAD=90°,又由DE⊥AM于点E,BF⊥AM得出∠AFB=90°,∠DEA=90°,∠ABF=∠EAD,然后即可判定△ABF≌△DAE,即可得出BF=AE;(2)首先设AE=x,则BF=x,DE=AF=2,然后将四边形的面积转化为两个三角形的面积之和,列出方程,得出BF,然后利用勾股定理得出BE,即可得解.【题目详解】(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DAE(AAS),∴BF=AE;(2)设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴=.【题目点拨】此题主要考查正方形的性质以及三角形全等的判定与性质、勾股定理的运用,熟练掌握,即可解题.20、(1)2;(2),【分析】(1)按照开立方,零指数幂,正整数指数幂的法则计算即可;(2)用因式分解法解一元二次方程即可.【题目详解】(1)解:原式=(2)解:或【题目点拨】本题主要考查实数的混合运算和解一元二次方程,掌握实数混合运算的法则和因式分解法是解题的关键.21、(1)见解析;(2)【分析】(1)如图连结,先证得,即可得到,即可得到是的切线;(2)由(1)知:过作于,先证明得到,设,在中,,即:解出方程即可求得答案.【题目详解】证明:(1)如图,连结,则,∴,∵,∴,∵,∴,而,∴,即有,∴,故是的切线;(2)由(1)知:过作于,∵,∴,而,由勾股定理,得:,在和中,∵,,∴,∴,设,在中,,即:解得:(舍去),∴.【题目点拨】本题考查的是相似三角形的应用和切线的性质定理,勾股定理应用,是综合性题目.22、∠P=50°【解题分析】根据切线性质得出PA=PB,∠PAO=90°,求出∠PAB的度数,得出∠PAB=∠PBA,根据三角形的内角和定理求出即可.【题目详解】∵PA、PB是⊙O的切线,∴PA=PB,∴∠PAB=∠PBA,∵AC是⊙O的直径,PA是⊙O的切线,∴AC⊥AP,∴∠CAP=90°,∵∠BAC=25°,∴∠PBA=∠PAB=90°-25°=65°,∴∠P=180°-∠PAB-∠PBA=180°-65°-65°=50°.【题目点拨】本题考查了切线长定理,切线性质,三角形的内角和定理,等腰三角形的性质的应用,主要考查学生运用定理进行推理和计算的能力,题目具有一定的代表性,难度适中,熟记切线的性质定理是解题的关键.23、(1)(3,4);(2)或;(3)m的取值范围是或.【分析】(1)根据点C到x轴、y轴的距离解答即可;(2)根据“坐标轴三角形”的定义求出线段DF和EF,然后根据三角形的面积公式求解即可;(3)根据题意可得:符合题意的直线MN应为y=x+b或y=-x+b.①当直线MN为y=x+b时,结合图形可得直线MN平移至与⊙O相切,且切点在第四象限时,b取得最小值,根据等腰直角三角形的性质和勾股定理可求得b的最小值,进而可得m的最大值;当直线MN平移至与⊙O相切,且切点在第二象限时,b取得最大值,根据等腰直角三角形的性质和勾股定理可求得b的最大值,进而可得m的最小值,可得m的取值范围;②当直线MN为y=-x+b时,同①的方法可得m的另一个取值范围,问题即得解决.【题目详解】解:(1)根据题意作图如下:由图可知:点C到x轴距离为4,到y轴距离为3,∴C(3,4);故答案为:(3,4);(2)∵点D(2,1),点E(e,4),点D,E,F的“坐标轴三角形”的面积为3,∴,,∴,即=2,解得:e=4或e=0;(3)由点N,M,G的“坐标轴三角形”为等腰三角形可得:直线MN为y=x+b或y=-x+b.①当直线MN为y=x+b时,由于点M的坐标为(m,4),可得m=4-b,由图可知:当直线MN平移至与⊙O相切,且切点在第四象限时,b取得最小值.此时直线MN记为M1N1,其中N1为切点,T1为直线M1N1与y轴的交点.∵△ON1T1为等腰直角三角形,ON=,∴,∴b的最小值为-3,∴m的最大值为m=4-b=7;当直线MN平移至与⊙O相切,且切点在第二象限时,b取得最大值.此时直线MN记为M2N2,其中N2为切点,T2为直线M2N2与y轴的交点.∵△ON2T为等腰直角三角形,ON2=,∴,∴b的最大值为3,∴m的最小值为m=4-b=1,∴m的取值范围是;②当直线MN为y=-x+b时,同理可得,m=b-4,当b=3时,m=-1;当b=-3时,m=-7;∴m的取值范围是.综上所述,m的取值范围是或.【题目点拨】本题是新定义概念题,主要考查了三角形的面积、直线与圆相切的性质、等腰三角形的性质和勾股定理等知识,正确理解题意、灵活应用数形结合的思想和分类讨论思想是解题的关键.24、(1);(2)销售单价为每千克60元时,日获利最大,最大获利为1900元.【分析】(1)根据图象利用待定系数法,即可求出直线解析式;(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【题目详解】解:(1)设一次函数关系式为由图象可得,当时,;时,.∴,解得∴与之间的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论