版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省2024届九年级数学第一学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.图所示,已知二次函数的图象正好经过坐标原点,对称轴为直线.给出以下四个结论:①;②;③;④.正确的有()A.个 B.个 C.个 D.个2.设a,b是方程的两个实数根,则的值为A.2014 B.2015 C.2016 D.20173.方程x(x﹣1)=0的根是()A.x=0 B.x=1 C.x1=0,x2=1 D.x1=0,x2=﹣14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将它绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,恰好使B′C′∥AB,A'C′与AB交于点E,则A′E的长为()A.3 B.3.2 C.3.5 D.3.65.若将半径为6cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.1cm B.2cm C.3cm D.4cm6.获2019年度诺贝尔化学奖的“锂电池”创造了一个更清洁的世界.我国新能源发展迅猛,某种特型锂电池2016年销售量为8万个,到2018年销售量为97万个.设年均增长率为x,可列方程为()A.8(1+x)2=97 B.97(1﹣x)2=8 C.8(1+2x)=97 D.8(1+x2)=977.如图,是圆内接四边形的一条对角线,点关于的对称点在边上,连接.若,则的度数为()A.106° B.116° C.126° D.136°8.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A. B. C. D.9.使关于的二次函数在轴左侧随的增大而增大,且使得关于的分式方程有整数解的整数的和为()A.10 B.4 C.0 D.310.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃ B.众数是28℃ C.中位数是24℃ D.平均数是26℃二、填空题(每小题3分,共24分)11.已知m,n是方程的两个根,则代数式的值是__________.12.抛物线的部分图象如图所示,对称轴是直线,则关于的一元二次方程的解为____.13.如图,在中,是斜边的垂直平分线,分别交于点,若,则______.14.如图,二次函数的图象记为,它与轴交于点,;将绕点旋转180°得,交轴于点;将绕点旋转180°得,交轴于点;……如此进行下去,得到一条“波浪线”.若在这条“波浪线”上,则____.15.如果,那么锐角_________°.16.如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AE、CF交于点G,半径BE、CD交于点H,且点C是弧AB的中点,若扇形的半径为,则图中阴影部分的面积等于_____.17.如图,已知正方ABCD内一动点E到A、B、C三点的距离之和的最小值为,则这个正方形的边长为_____________18.从这九个自然数中,任取一个数是偶数的概率是____.三、解答题(共66分)19.(10分)新华商场销售某种冰箱,每台进货价为元,市场调研表明:当销售价为元时,平均每天能售出台,而当销售价每降低元时,平均每天就能多售出台.双“十一”期间,商场为了减少库存进行降价促销,如果在降价促销的同时还要保证这种冰箱的销售利润平均每天达到元,这种冰箱每台应降价多少元?20.(6分)⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.21.(6分)已知抛物线与x轴分别交于,两点,与y轴交于点C.(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点.①如图1,设,当k为何值时,.②如图2,以A,F,O为顶点的三角形是否与相似?若相似,求出点F的坐标;若不相似,请说明理由.22.(8分)列一元二次方程解应用题某公司今年1月份的纯利润是20万元,由于改进技术,生产成本逐月下降,3月份的纯利润是22.05万元.假设该公司2、3、4月每个月增长的利润率相同.(1)求每个月增长的利润率;(2)请你预测4月份该公司的纯利润是多少?23.(8分)如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连结OE,CD=,∠ACB=30°.(1)求证:DE是⊙O的切线;(2)分别求AB,OE的长.24.(8分)矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线y=x与BC边相交于D.(1)求点D的坐标:(2)若抛物线y=ax+bx经过D、A两点,试确定此抛物线的表达式:(3)P为x轴上方(2)题中的抛物线上一点,求△POA面积的最大值.25.(10分)如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点⊙O与AB相切于点M,与CD相切于点N(1)求证:∠AOC=135°(2)若NC=3,BC=,求DM的长26.(10分)定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)判断下列命题是真命题,还是假命题?①正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形.③如图1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED.(2)如图2,菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点.①求AE,DE的长;②AC,BD交于点O,求tan∠DBC的值.
参考答案一、选择题(每小题3分,共30分)1、C【分析】由抛物线开口方向得到a<0以及函数经过原点即可判断①;根据x=-1时的函数值可以判断②;由抛物线的对称轴方程得到为b=3a,用求差法即可判断③;根据抛物线与x轴交点个数得到△=b2-4ac>0,则可对④进行判断.【题目详解】∵抛物线开口向下,
∴a<0,
∵抛物线经过原点,
∴c=0,
则abc=0,所以①正确;
当x=-1时,函数值是a-b+c>0,则②正确;
∵抛物线的对称轴为直线x=-<0,
∴b=3a,
又∵a<0,
∴a-b=-2a>0∴a>b,则③错误;
∵抛物线与x轴有2个交点,
∴△=b2-4ac>0,即4ac-b2<0,所以④正确.
故选:C【题目点拨】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.2、C【题目详解】解:∵a,b是方程x2+x﹣2017=0的两个实数根,∴a+b=﹣1,a2+a﹣2017=0,∴a2=﹣a+2017,∴a2+2a+b=﹣a+2017+2a+b=2017+a+b=2017﹣1=1.故选C.【题目点拨】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则,.也考查了一元二次方程的解.3、C【分析】由题意推出x=0,或(x﹣1)=0,解方程即可求出x的值.【题目详解】解:∵x(x﹣1)=0,∴x1=0,x2=1,故选C.【题目点拨】此题考查的是一元二次方程的解法,掌握用因式分解法解一元二次方程是解决此题的关键.4、D【解题分析】如图,过点D作DF⊥AB,可证四边形EFDC'是矩形,可得C'E=DF,通过证明△BDF∽△BAC,可得,可求DF=2.4=C'E,即可求解.【题目详解】如图,过点D作DF⊥AB,∵∠C=90°,AC=6,BC=8,∴AB==10,∵将Rt△ABC绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,∴AC=A'C'=6,∠C=∠C'=90°,CD=BD=4,∵AB∥C'B'∴∠A'EB=∠A'C'B'=90°,且DF⊥AB,∴四边形EFDC'是矩形,∴C'E=DF,∵∠B=∠B,∠DFB=∠ACB=90°,∴△BDF∽△BAC∴,∴∴DF=2.4=C'E,∴A'E=A'C'﹣C'E=6﹣2.4=3.6,故选:D.【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键是熟知旋转的定义、矩形的性质及相似三角形的判定与性质.5、C【分析】根据圆锥的底面圆周长是扇形的弧长列式求解即可.【题目详解】设圆锥的底面半径是r,由题意得,,∴r=3cm.故选C.【题目点拨】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.6、A【分析】2018年年销量=2016年年销量×(1+年平均增长率)2,把相关数值代入即可.【题目详解】解:设年均增长率为x,可列方程为:8(1+x)2=1.故选:A.【题目点拨】此题主要考查了根据实际问题列一元二次方程;得到2018年收入的等量关系是解决本题的关键.7、B【解题分析】根据圆的内接四边形对角互补,得出∠D的度数,再由轴对称的性质得出∠AEC的度数即可.【题目详解】解:∵四边形ABCD是圆的内接四边形,∴∠D=180°-∠ABC=180°-64°=116°,∵点D关于的对称点在边上,∴∠D=∠AEC=116°,故答案为B.【题目点拨】本题考查了圆的内接四边形的性质及轴对称的性质,解题的关键是熟知圆的内接四边形对角互补及轴对称性质.8、A【解题分析】画树状图得出所有的情况,根据概率的求法计算概率即可.【题目详解】画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,∴两次摸出的小球标号之和等于6的概率故选A.【题目点拨】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.9、A【分析】根据“二次函数在y轴左侧y随x的增大而增大”求出a的取值范围,然后解分式方程,最后根据整数解及a的范围即可求出a的值,从而得到结果.【题目详解】∵关于的二次函数在轴左侧随的增大而增大,,解得,把两边都乘以,得,整理,得,当时,,,∴使为整数,且的整数的值为2、3、5,∴满足条件的整数的和为.故选:A.【题目点拨】本题考查了二次函数的性质与对称轴,解分式方程,解分式方程时注意符号的变化.10、B【解题分析】分析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.详解:由图可得,极差是:30-20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C错误,平均数是:℃,故选项D错误,故选B.点睛:本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.二、填空题(每小题3分,共24分)11、1【分析】由m,n是方程x2-x-2=0的两个根知m+n=1,m2-m=2,代入到原式=2(m2-m)-(m+n)计算可得.【题目详解】解:∵m,n是方程x2-x-2=0的两个根,
∴m+n=1,m2-m=2,
则原式=2(m2-m)-(m+n)
=2×2-1
=4-1
=1,
故答案为:1.【题目点拨】本题主要考查根与系数的关系,x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,,x1x2=.12、【分析】根据二次函数的性质和函数的图象,可以得到该函数图象与轴的另一个交点,从而可以得到一元二次方程的解,本题得以解决.【题目详解】由图象可得,
抛物线与x轴的一个交点为(1,0),对称轴是直线,
则抛物线与轴的另一个交点为(-3,0),
即当时,,此时方程的解是,
故答案为:.【题目点拨】本题考查了抛物线与轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.13、2【分析】连接BF,根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,再根据等边对等角的性质求出∠ABF=∠A,然后根据三角形的内角和定理求出∠CBF,再根据三角函数的定义即可求出CF.【题目详解】如图,连接BF,
∵EF是AB的垂直平分线,
∴AF=BF,
∴,,在△BCF中,∴,∴.故答案为:.【题目点拨】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角函数的定义,熟记性质并作出辅助线是解题的关键.14、1【分析】根据抛物线与x轴的交点问题,得到图象C1与x轴交点坐标为:(1,1),(2,1),再利用旋转的性质得到图象C2与x轴交点坐标为:(2,1),(4,1),则抛物线C2:y=(x-2)(x-4)(2≤x≤4),于是可推出横坐标x为偶数时,纵坐标为1,横坐标是奇数时,纵坐标为1或-1,由此即可解决问题.【题目详解】解:∵一段抛物线C1:y=-x(x-2)(1≤x≤2),
∴图象C1与x轴交点坐标为:(1,1),(2,1),
∵将C1绕点A1旋转181°得C2,交x轴于点A2;,
∴抛物线C2:y=(x-2)(x-4)(2≤x≤4),
将C2绕点A2旋转181°得C3,交x轴于点A3;
…
∴P(2121,m)在抛物线C1111上,
∵2121是偶数,
∴m=1,故答案为1.【题目点拨】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.15、30【分析】根据特殊角的三角函数值即可得出答案.【题目详解】∵∴故答案为30【题目点拨】本题主要考查特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.16、π﹣1【分析】根据扇形的面积公式求出面积,再过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,然后证明△CMG与△CNH全等,从而得到中间空白区域的面积等于以1为对角线的正方形的面积,从而得出阴影部分的面积.【题目详解】两扇形的面积和为:,过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,如图,则四边形EMCN是矩形,∵点C是的中点,∴EC平分∠AEB,∴CM=CN,∴矩形EMCN是正方形,∵∠MCG+∠FCN=90°,∠NCH+∠FCN=90°,∴∠MCG=∠NCH,在△CMG与△CNH中,,∴△CMG≌△CNH(ASA),∴中间空白区域面积相当于对角线是的正方形面积,∴空白区域的面积为:,∴图中阴影部分的面积=两个扇形面积和﹣1个空白区域面积的和.故答案为:π﹣1.【题目点拨】本题主要考查了扇形的面积求法,三角形的面积的计算,全等三角形的判定和性质,得出四边形EMCN的面积是解决问题的关键.17、【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC,表示Rt△GMC的三边,根据勾股定理即可求出正方形的边长.【题目详解】解:如图,将△ABE绕点A旋转60°至△AGF的位置,连接EF,GC,BG,过点G作BC的垂线交CB的延长线于点M.设正方形的边长为2m,∵四边形ABCD为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE绕点A旋转60°至△AGF,∴,∴△AEF和△ABG为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC,∴GC=,∵∠GBM=90°-∠ABG=30°,∴在Rt△BGM中,GM=m,BM=,Rt△GMC中,勾股可得,即:,解得:,∴边长为.故答案为:.【题目点拨】本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC是解决此题的关键.18、【分析】由从1到9这九个自然数中任取一个,是偶数的有4种情况,直接利用概率公式求解即可求得答案.【题目详解】解:这九个自然数中任取一个有9种情况,其中是偶数的有4种情况,从1到9这九个自然数中任取一个,是偶数的概率是:.故答案为:.【题目点拨】此题考查了概率公式的应用.用到的知识点为:概率所求情况数与总情况数之比.三、解答题(共66分)19、这种冰箱每台应降价元.【分析】根据题意,利用利润=每台的利润×数量列出方程并解方程即可.【题目详解】解:设这种冰箱每台应降价元,根据题意得解得:,为了减少库存答:这种冰箱每台应降价元.【题目点拨】本题主要考查一元二次方程的实际应用,能够根据题意列出方程是解题的关键.20、(1)作图见试题解析;(2)作图见试题解析.【解题分析】试题分析:(1)过点C作直径CD,由于AC=BC,弧AC=弧BC,根据垂径定理的推理得CD垂直平分AB,所以CD将△ABC分成面积相等的两部分;(2)连结PO并延长交BC于E,过点A、E作弦AD,由于直线l与⊙O相切于点P,根据切线的性质得OP⊥l,而l∥BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE将△ABC分成面积相等的两部分.试题解析:(1)如图1,直径CD为所求;(2)如图2,弦AD为所求.考点:1.作图—复杂作图;2.三角形的外接圆与外心;3.切线的性质;4.作图题.21、(1),D的坐标为;(2)①;②以A,F,O为顶点的三角形与相似,F点的坐标为或.【分析】(1)将A、B两点的坐标代入二次函数解析式,用待定系数法即求出抛物线对应的函数表达式,可求得顶点;(2)①由A、C、D三点的坐标求出,,,可得为直角三角形,若,则点F为AD的中点,可求出k的值;②由条件可判断,则,若以A,F,O为顶点的三角形与相似,可分两种情况考虑:当或时,可分别求出点F的坐标.【题目详解】(1)抛物线过点,,,解得:,抛物线解析式为;,顶点D的坐标为;(2)①在中,,,,,,,,,,为直角三角形,且,,F为AD的中点,,;②在中,,在中,,,,,,若以A,F,O为顶点的三角形与相似,则可分两种情况考虑:当时,,,设直线BC的解析式为,,解得:,直线BC的解析式为,直线OF的解析式为,设直线AD的解析式为,,解得:,直线AD的解析式为,,解得:,.当时,,,,直线OF的解析式为,,解得:,,综合以上可得F点的坐标为或.【题目点拨】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、相似三角形的判定与性质和直角三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.22、(1)每个月增长的利润率为5%.(2)4月份该公司的纯利润为23.1525万元.【分析】(1)设出平均增长率,根据题意表示出1月份和3月份的一元二次方程即可解题,(2)根据上一问求出的平均增长率,用3月份利润即可求出4月份的纯利润.【题目详解】解:(1)设每个月增长的利润率为x,根据题意得:20×(1+x)2=22.05,解得:x1=0.05=5%,x2=﹣2.05(不合题意,舍去).答:每个月增长的利润率为5%.(2)22.05×(1+5%)=23.1525(万元).答:4月份该公司的纯利润为23.1525万元.【题目点拨】本题考查了一元二次方程的实际应用,属于简单题,理解平均增长率的含义是解题关键.23、(1)证明见解析;(2)AB=2,OE=.【分析】(1)根据AB是直径即可求得∠ADB=90°,再根据题意可求出OD⊥DE,即得出结论;(2)根据三角函数的定义,即可求得BC,进而得到AB,再在Rt△CDE中,根据直角三角形的性质,可求得DE,再由勾股定理求出OE即可.【题目详解】(1)连接BD,OD.∵AB是直径,∴∠ADB=90°.又∵AB=BC,∴AD=CD.∵OA=OB,∴OD∥BC.∵DE⊥BC,∴∠DEC=90°.∵OD∥BC,∴∠ODE=∠DEC=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)在Rt△CBD中CD,∠ACB=30°,∴BC2,∴AB=2,∴ODAB=1.在Rt△CDE中,CD,∠ACB=30°,∴DECD.在Rt△ODE中,OE.【题目点拨】本题考查了切线的判定、勾股定理、圆周角定理以及解直角三角形,是一道综合题,难度不大.24、(1)(4,3);(2)y=x+x;(3)【分析】(1)根据矩形的性质可知点D的纵坐标为3,代入直线解析式即可求出点D的横坐标,从而可确定点D的坐标;(2)直接将点A、D的坐标代入抛物线解析式即可;(3)当P为抛物线顶点时,△POA面积最大,将抛物线解析式化为顶点式,求出点P的坐标,再计算面积即可.【题目详解】解:(1)设D的横坐标为x,则根据题意有3=x,则x=4∴D点坐标为(4,3)(2)将A(6,0),D(4,3)代入y=ax+bx中,得解得:∴此抛物线的表达式为:y=x+x;(3)由于△POA底边为OA=6,∴当P为抛物线顶点时,△POA面积最大∴∴∴的最大值为【题目点拨】本题是一道二次函数与矩形相结合的题目,熟练掌握二次函数的性质和轴对称的性质;会利用待定系数法求函数解析式;理解坐标与图形性质,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度是解题的关键.25、(1)见解析;(2)DM=1.【分析】(1)只要证明OC平分∠ACD,即可解决问题;(2)由切线长定理可知:AM=AE,DM=DN,CN=CE=3,设DM=DN=x,在Rt△BDC中,根据,构建方程即可解决问题.【题目详解】(1)证明:连接OM,ON,过O点做OE⊥AC,交AC于E,如图所示,∵⊙O与AB相切于点M,与CD相切于点N∴OM⊥AB,ON⊥CD,∵OA平分∠BAC,OE⊥AC,OM⊥AB∴OM=OE即:E为⊙O的切点;∴OE=ON,又∵OE⊥AC,ON⊥CD∴OC平分∠ACD∵CD⊥AB∴∠ADC=90°∴∠DAC+∠ACD=90°∴∠OAC+∠OCA=45°∴∠AOC=180°-(∠OAC+∠OCA)=180°-45°=135°,即:∠AOC=135°(2)由(1)得,AM=AE,DM=DN,CN=CE=3,设DM=DN=x,∵AB=AC∴BD=AB-AD=AC-AE-DM=CE=DM=3-x∵CD=3+x在Rt∆BCD中,由勾股定理得:即:解得:x=1或x=-1(舍去)即DM=1.【题目点拨】本题考查切线的性质,解题的关键是熟练掌握基本知识,学会利用参数构建方程.26、(1)见解析;(2)①AE=2,DE=4;②tan∠DBC=.【分析】(1)①证明△ABE≌△DCE(SAS),得出△ABE∽△DCE即可;②连接AC,由自相似菱形的定义即可得出结论;③由自相似菱形的性质即可得出结论;(2)①由(1)③得△ABE∽△DEA,得出,求出AE=2,DE=4即可;②过E作EM⊥AD于M,过D作DN⊥BC于N,则四边形DMEN是矩形,得出DN=EM,DM=EN,∠M=∠N=90°,设AM=x,则EN=DM=x+4,由勾股定理得出方程,解方程求出AM=1,EN=DM=5,由勾股定理得出DN=EM==,求出BN=7,再由三角函数定义即可得出答案.【题目详解】解:(1)①正方形是自相似
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 8《千年梦圆在今朝》(教学实录)-2023-2024学年语文四年级下册统编版
- 2023一年级数学下册 五 绿色行动-100以内的加减法(一)信息窗1 两位数加一位数(不进位)两位数加整十数教学实录 青岛版六三制
- Unit 1 Hello 教学实录2024~2025学年人教版七年级英语上册
- Oleoyl-3-carbacyclic-phosphatidic-acid-3-ccPA-18-1-生命科学试剂-MCE
- 三年级品德与社会下册 当灾难来临时 3教学实录 冀教版
- 学生感谢信集锦八篇
- 第十章第三节《物体的浮沉条件及应用》教学实录 -2023-2024学年人教版八年级物理下学期
- 2023年钢筋扫描仪项目筹资方案
- 唐山工业职业技术学院《智能控制终端技术》2023-2024学年第一学期期末试卷
- 泰州学院《工科数学分析(下)》2023-2024学年第一学期期末试卷
- 化工企业职业健康安全和环境目标、指标分解表
- 华为ICT大赛网络赛道考试题库(786题)
- 犬猫病诊疗技术
- 企业新员工师徒结对方案
- 2023年药品流通行业运行统计分析报告
- 2024年天翼云从业者认证考试题库
- 仓库组长年终总结报告
- 浦发银行个人信用贷款合同
- 现代小说课件教学课件
- 2024年新课标培训2022年小学英语新课标学习培训课件
- 2023年遵义市第一人民医院招聘笔试真题
评论
0/150
提交评论