一种双变压器串联谐振软开关推挽电路_第1页
一种双变压器串联谐振软开关推挽电路_第2页
一种双变压器串联谐振软开关推挽电路_第3页
一种双变压器串联谐振软开关推挽电路_第4页
一种双变压器串联谐振软开关推挽电路_第5页
已阅读5页,还剩104页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一种双变压器串联谐振软开关推挽电路(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)

一种双变压器串联谐振软开关推挽电路(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)电源技术<2008年7月73■<浙江大学张辉邓嘉马皓1引言推挽拓扑在升压电路中得到了广泛应用。在两级结构的纯正弦波输出车载逆变电源中,该DC/DC变换器用来作前一级的升压电路。利用串联谐振软开关技术[1-2],该升压电路具有开关管开关损耗小,效率高等优点,但由于输入电压低,输出电压高,故变压器的损耗会较大。针对12V输入、360V输出的具体DC/DC变换器,提出一种双变压器软开关推挽电路,两个推挽变换器的变压器次级串联,以实现串联谐振软开关,并与单变压器电路作比较分析。最后按照产品设计要求,分别研制了一台双变压器和一台单变压器的变换器,并对该结构进行了验证。2双变压器串联谐振软开关电路2.1主电路构成及工作原理图1所示的软开关推挽电路中MOSFET开关管和整流二极管均工作在零电压开通和零电流关断条件下,不仅效率高,并且电路的重量轻,体积小,成本低,输出电压纹波小[3-5]。应用于纯正弦波输出车载逆变电源中的推挽电路需要将12V蓄电池电压升压到逆变电路所需的360V中间直流母线电压。考虑到蓄电池电压的波动,为使变换器在10V的输入电压下正常工作,变压器次级绕组和初级绕组的匝数比较大。这将导致出现变压器初、次级耦合不够紧密,损耗增大等问题,最终造成效率下降。为提高变换器效率,在上述电路基础上,提出一种双变压器串联谐振软开关电路拓扑,两个推挽变换器的变压器次级串联,并且实现串联谐振软开关,如图2所示。该变换器包括4个MOSFET开关管VT11,VT12,VT21,VT22、两个变压器、串联谐振电路、输出整流器、输出滤波电容Co和负载RLo旁路电容C11,C12,C21,C22利用MOSFET开关管漏源极间的寄生电容,串联谐振电感L利用变压器次级的漏感。选择串联电路的谐振频率为电路工作的开关频率。由于C0较大,故输出电压可看作近似恒定;谐振电路损耗忽略不计。令谐振电感电流iL和谐振电容电压uc的初始值分别为iL0和uC0,则iL和uc应满足:一种双变压器串联谐振软开关推挽电路摘要:针对输出电压与输入电压之比较高的推挽变换器,提出一种双变压器串联谐振软开关推挽电路,以提高其效率。两个推挽变换器的变压器次级串联,并且实现串联谐振软开关。给出了其电路构成及工作原理,推导分析了该电路的工作过程。在此基础上,对该电路与单变压器串联谐振软开关推挽电路作了比较研究。最后研制了12V输入、360V输出、200W功率的DC/DC变换器。通过实验证明,该电路具有较高的效率。关键词:变压器;串联;谐振/推挽电路;软开关图1单变压器串联谐振软开关推挽电路原理图电源技术<2008年7月74电路达到稳态后,开关管导通时L-C串联谐振电路的压降为零。令开关管从to时刻开始导通,则在导通阶段,式(2和式(3可简化为:由上述分析可得图3所示的电路理想工作波形。其中iml,im2分别为两个变压器的激磁电流。(1阶段1[t0,t1]VT11,VT21在零电压条件下导通,VTl2,VT22关断,通过L,C谐振,当流过VT11,VT21的电流谐振到零时,VTl1,VT21实现零电流关断。(2阶段2[t1,t2]VT11,VT21,VT12,VT22都关断,通过变压器剩余的激磁电流,使C11,C21充电至2Uin,同时C12,C22上的电压放电到零。(3阶段3[t2,t3]VT12,VT22在零电压条件下导通,VT11,VT21关断,通过L,C谐振,当流过VT12,VT22的电流谐振到零时,VT12,VT22实现零电流关断。(4阶段4[t3,t4]VT11,VT21,VTl2,VT22都关断,通过变压器剩余的激磁电流,使C12,C22充电至2Uin,同时C11,C21上的电压放电到零。可见,阶段2和4的时间由开关管漏源极间的寄生电容和变压器激磁电流决定,在t2或t4时刻后开通VT12,VT22或VT11,VT21即可实现零电压开通。2.2双变压器电路与单变压器电路的比较分析可见,双变压器电路用次级串联的两个变压器取代了单个变压器。其初级的两个独立的推挽主电路分别连接输入电源,并采用相同时序的控制信号。该电路利用两个变压器次级漏感之和作为串联谐振电感,无需额外的电感,保持了单变压器电路的优点。此外,其优点还有:①变压器匝比减为原先单个变压器时的一半,在输入电压一定时,次级电压减为原先的一半,次级串联后得到的电压等于原先的电压。由于匝比减小,较好解决了初、次级的耦合问题,减小了损耗。②输出功率一定时,流过开关管和变压器初级的电流都减半。因此,单个开关管的导通损耗和单个变压器的初级铜耗将减为原先的1/4,全部开关管的导通损耗和全部变压器的初级铜耗也将减为原先的一半,有效提高了效率。根据实际情况设计变压器时应注意:①要尽量保证变压器的次级漏感应小,以确保品质因数在一定范围内,从而使电路工作过程中谐振元件不用承受太大的电压;②两个变压器参数保持一致,使它们传递同样的功率,防止因功率不同出现的过热现象。3实验验证根据理论分析,采用串联谐振软开关技术及双变压器电路结构,研制了一台双变压器和一台单变压器的12V输入、360V输出、200W的DC/DC变换器。3.1软开关的实验验证图4示出输入电流和MOSFET开关管VT11,VT21的漏源极间电压波形,其输出功率为122.9W。由图可见,开关管基本实现了低电压开通、零电流关断。图5示出不同输出功率Po下MOSFET开关管开关时的电压电流波形比较。由图可见,从轻载到满载,开关管基本保持低电压开通、零电流关断。(下转57页)图2双变压器串联谐振软开关推挽电路原理图图3双变压器软开关电路理想工作波形图4双变压器串联谐振软开关推挽电路实验结果平面变压器在开关电源中的技术分析平面变压器在开关电源中的技术分析高功率密度是当今开关电源发展的主要趋势,要做到这一点,必须提高磁元件的功率密度平面变压器因为特殊的平面结构和绕组的紧密耦合,使得高频寄生参数大大降低,极大地改进了开关电源的工作状态,因此近年来得到了广泛的使用研究了几种不同的平面结构和绕组制作的方式,介绍了设计平面变压器的一个标准方法,从而使得设计过程变得更加简单,大大降低了设计成本。最后,比较了平面变压器和传统变压器的一些参数,并给出了设计方针.

关键词:平面变压器;漏感;插入技术

0引言

磁性元件的设计是开关电源的重要部分,因为平面变压器在提高开关电源的特性方面有着很大的优势,因此近年来得到了广泛的应用。对于一个理想的变压器来说,初级线圈所产生的磁通都穿过次级线圈,即没有漏磁通。而对普通变压器来说,初级线圈所产生的磁通并非都穿过次级线圈,于是就产生了漏感,电磁耦合的紧密要求也无法满足。而平面变压器只有一匝网状次级绕组,这一匝绕组也不同于传统的漆包线,而是一片铜皮,贴绕在多个同样大小的冲压铁氧体磁芯表面上。所以,平面变压器的输出电压取决于磁芯的个数,而且平面变压器的输出电流可以通过并联进行扩充,以满足设计的要求。因此,平面变压器的特点就显而易见了:平面绕组的紧密耦合使得漏感大大地减小;平面变压器特殊的结构使得它的高度非常的低,这使变换器做在一个板上的设想得到实现。但是,平面结构存在很高的容性效应等问题,大大限制了它的大规模使用,不过,这些缺点在某些应用中,也有可能转换为一种优点。另外,平面的磁芯结构增大了散热面积,有利于变压器散热。1平面变压器的特性研究

如前所述,平面变压器的优点主要集中在较低的漏感值和交流阻抗。绕组问的间隙越大意味着漏感越大,也就产生更高的能量损失。平面变压器利用铜箔与电路板间的紧密结合,使得在相邻的匝数层间的间隙非常的小,因此能量损耗也就很小了。

在平面型变压器里,其“绕组”是做在印制电路板上的扁平传导导线或是直接用铜泊。扁平的几何形状降低了开关频率较高时趋肤效应的损耗,也就是涡流损耗。因此,能最有效地利用铜导体的表面导电性能,效率要比传统变压器高得多。图1给出了一个平面变压器的剖面图,并且利用两层绕组间距离的不同,而获得在不同间隙下的漏感和交流阻抗值。

图2与图3给出了在不同的间隙下漏感和交流阻抗的变化,可以明显地看出间隙越大,漏感越大,交流阻抗越小。在间隙增加1mm的状况下漏感值增加了5倍之多。因此,在满足电气绝缘的情况下,应该选用最薄的绝缘体来获得最小的漏感值。

然而,容性效应在平面变压器中是非常重要的,在印制电路板上紧密绕制的导线使得容性效应非常的明显。而且绝缘材料的选取对容性值也有着非常大的影响,绝缘材料的介电常数越高,变压器的容性值越高。而容性效应会引起EMI,因为从初级到次级的绕组中只有容性回路的绕组传播这种干扰。为了验证,笔者做了一个试验,在铜导线的间隙增加O.2mm的情况下,而电容值就减少了20%。因此,如果需要一个比较低的电容值,则必须在漏感和电容值之间做出一个折中的选择。2插入技术

插入技术是指在布置变压器原、副边绕组时,使原边绕组与副边绕组交替放置,增加原、副边绕组的耦合以减小漏感,同时使得电流平均分布,减小变压器损耗。

现在插入技术的研究被分为两个方面,即应用于变压器的插入(正激电路)和应用于连接电感器的插入(反激电路)。因此,插入技术现在已经被放在不同的拓扑中作为不同的磁性部件来研究。

2.1应用于平面变压器的插入技术

应用于变压器中的插入技术的主要优点如下:

1)使变压器中磁性能量储存的空间减少,导致漏感的减少;

2)使电流传输过程中在导体上理想分布,导致交流阻抗的减少;

3)绕组间更好的耦合作用,导致更低的漏感。

为了说明插入技术的特征,图4给出了应用3种不同插入技术的结构,P代表初级绕组,s代表次级绕组。试验显示SPSP结构是最好的,因为初级和次级的绕组都是间隔插人的。图5显示了在500kHz时,3种结构的交流阻抗和漏感值,通过比较可以很容易地发现应用了插入技术的变压器,交流阻抗和漏感值都有了很大的减少。

2.2多绕组变压器中平面结构的优势

平面变压器另一个重要的优点是高度很低,这使得在磁芯上可以设置比较多的匝数。一个高功率密度的变换器需要一个体积比较小的磁性元件,平面变压器很好地满足了这一要求。例如,在多绕组的变压器中需要非常多的匝数,如果是普通的变压器将会造成体积和高度过大,影响电源的整体设计,而平面变压器则不存在这一问题。

另外,对于多绕组的变压器来说,绕组间保持很好的耦合非常重要。如果耦合不理想则漏感值增大,将会使得次级电压的误差增大。而平面变压器因为具有很好的耦合,使得它成为最佳的选择。

2.3在不同拓扑中平面变压器的作用

在不同的拓扑中,磁性元件的作用也是不同的。在正激变换器中的变压器,磁性能量在主开关管开通的时候由初级绕组传递到次级绕组中。然而,在反激变换器中的“变压器”并不完全是一个变压器,而是两个连接的电感器。在反激拓扑中的“变压器”在主开关管开通的时候初级绕组储存能量,而在关闭的时候将能量传送到次级绕组。因此,这种插入技术的优点同上面相比是不同的。应用于这种变压器的插入技术的特点如下:

1)在磁芯中储存的能量没有减少,因为电流在某时刻只能在一个绕组中流动,并且没有电流补偿;

2)电流的分布并不理想,原因同上,因此交流阻抗也没有减小;

3)插入使得绕组间产生较好的耦合,因此有比较小的漏感值。

3平面变压器的标准化设计

平面变压器的优点如上所述,同样它也有缺点,其最主要的缺点就是设计的过程非常复杂,而且设计成本也非常高。

下面介绍一种标准的设计平面变压器的程序步骤[3];它通过提供一个标准的匝数模型的设计,使之能够被使用于不同的平面变压器中,从而使得设计过程大大简化,费用大大降低。

在双面PCB板的每一层都是由一到多匝的绕组组成的,而且所有的层都保持着一样的物理特性:即相同的形状和相同的外部连接点。在有些多匝的层次中,这个外部连接点是不同匝数间的电气连接点。如果有些层只有一匝,它也可以被印制在PCB的双面来降低交流阻抗。使用铜箔直接印制在PCB板上来替代传统的导线,即使在许多需要很多匝数的开关电源中,变压器依旧能保持一个很小的体积,这便大大减小了整机的体积。具体的设计步奏和注意事项请参阅文献[3]。图6显示了一个顶层的标准匝数设计的例子,它使用的是罐形(RM)磁芯。

铜箔高度按照对应于最大开关频率时的趋肤深度选取,这样可以使铜箔的所有部分都成为电流通路,大大减少集肤效应的影响。因此,应该使每一种开关频率对应于不同的铜箔高度。

4实验论证

为了比较平面变压器和传统变压器,分别做了两种变压器的模型,一种使用平面结构并使用了插入技术,另一种使用铜线分别在初级和次级绕制而成。两种变压器都被运用于一个互补控制的半桥变换器中。两个变压器的参数如下:

初级12匝:

次级两个l匝的绕组(1:1中心抽头)。

传统变压器使用漆包线作为绕组,虽然在这些线圈中电流密度不尽相同,选择电流密度小于7.5A/mm。

平面变压器初级绕组做成4层,有4个并列的次级。这个变压器的最终结构如图7所示。

两种变压器都使用了同样的磁芯RM10,比较了两种变压器的漏感,交流阻抗和占用的面积,结果列于表1。

由表1可知,平面变压器的漏感仅为传统变压器的1/5,交流阻抗也仅为l/3,由此可见这将大大提高变换器的工作特性。而且,由于结构的更加紧凑,使得可以使用更小的RM8磁芯。

5结语

平面变压器在减小漏感、交流阻抗等方面有着非常大的优点,并且因为体积的小巧使之成为一种非常好的磁性元件。给出了一种标准的设计平面变压器的方法,使得设计平面变压器变得更加容易,成本也将大大降低。可以预见,平面变压器将有着相当好的应用前景。自激式开关电源变压器的设计1.功率变压器设计与计算产品规格要求:输入电压:VAC=85~265V50~60Hz输出电压:VO=5V,输出电流:IO=0.4A考虑到短暂的负载,最大输出电流设置为:IOMAX=1.2IO=0.48A1.1开关频率该系统是一个可变开关频率系统(RCC的开关频率与输入电压和输出负载变化),所以有一些自由切换频率选择度。然而,频率必须至少为25kHz,以尽量减少噪音。更高的开关频率将降低变压器的噪音,但增加器件的耗散功率及开关电源的效率水平。该例取最小开关频率和满载时的最大占空比可以表示如下为:fSmin=50kHz,Dmax=0.51.2MOSFET的导通率MOSFET的最大漏极电压必须低于其击穿电压。最大漏极电压的总和=输入最高电压+次级反射电压和电压尖峰(由主要在最大输入电压寄生电感引起的)。最大输入电压为375V和MOSFET的击穿电压为600V。假设输出整流二极管压降为0.7V,电压尖峰为95V,而MOSFET电压余量至少是50V的,给出的反射电压为:Vfl=V(BRDSS-Vmargin-VDCmax-Vspk=600-50-375-95=80V给出的圈数比为以上式中:Vfl=二次反射电压V(BRDSS=MOSFET击穿电压Vmargin=电压余量VDC(max=最大输入DC电压Vspk=反馈电压尖峰Vf=电压降N=圈数比Np=初级绕组匝数Ns=二次绕组匝数1.3初级电流初级峰值电流可以表示为:初级有效值(RMS)电流可以表示为其中:Ippk=初级峰值电流VO=输出电压IO(max=最大电流输出η=效率,等于70%Dmax=最大占空比VDC(min=最小输入电压Iprms=初级有效值电流1.4初级电感初级电感可表示为式中:VDC(min=最小输入DC电压fs(min=最小开关频率Dmax=最大占空比Ippk=初级峰值电流例如,如果主电感量设置为5.2mH,最小开关频率为:1.5磁芯尺寸最常用的方式选择一个AP值大小合适的磁心为基础,磁芯的有效(磁)截面积及窗口面积可绕下的产品。如使用EE16/8磁心,估算最低AP(CM4)的方程式为:式中:Lp=初级电感量Iprms=初级RMS电流Ku=窗口利用系数,等于:档墙方式为0.4,三重绝缘线为0.7Bmax=饱和磁通密度T=磁芯的温升1.6初级绕组1.6.1绕组匝数EE16核心有效面积为20.1mm2(查磁芯的数据表)。初级绕组的圈数的计算方法:式中:Np=初级绕组匝数VDC(min=最小输入DC电压Dmax=最大占空比fs(min=最小开关频率B=磁通密度摆动Ae=磁芯有效面积1.6.2线径电流密度(AJ允许通过所选择的铜线的电流4A/mm2.。初级铜导线的直径可以表示为:其中:dp=初级绕组线直径Iprms=初级有效值电流AJ=电流密度1.6.3初级绕组每层匝数EE16骨架的窗口为9毫米左右,因此,如果选择具有铜直径的0.17毫米和外径为0.21毫米漆包线,每一层的圈数表示为实取Np=168(要绕4层1.6.4实际磁通摆动使用的Np=168值,实际磁通摆动表示为其中:B=磁通密度摆幅VDC(min=最小输入总线电压Dmax=最大占空比fs(min=最小开关频率Ae=磁芯有效面积的Np=初级绕组匝数1.7次级绕组使用0.21毫米直径三层绝缘铜电线,次级绕组的匝数可以表示为其中:Ns=二次绕组匝数Np=此案初级绕组匝数=168(总匝数有4个绕组层)1.8辅助绕组1.8.1辅助绕组匝数对于光耦是隔离的应用,在最小输入电压时MOSFET的栅极电压应为10V左右。所以绕组的辅助绕组匝数的计算方法取辅助绕组匝数为11(Na=11),选择铜直径0.17毫米外径为0.21毫米漆包线。式中Vg=栅极电压VDC(min=最小输入总线电压Na=辅助绕组匝数Np=初级绕组匝数Vo=光耦电压VF=反激电压Ns=二次绕组匝数1.8.2线径1.9间隙长度开关电源原理与设计(七)-正激式变压器开关电源中心议题:介绍正激式变压器开关电源正激式变压器开关电源的优缺点正激式变压器开关电源电路参数的计算正激式开关电源变压器初级线圈匝数的计算变压器初、次级线圈匝数比的计算正激式变压器开关电源正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。正激式变压器开关电源工作原理所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R是负载电阻。在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua,而输出电压的幅值Up不变。因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充电;另一方面,流过反馈线圈N3绕组中的电流产生的磁场可以使变压器的铁心退磁,使变压器铁心中的磁场强度恢复到初始状态。由于控制开关突然关断,流过变压器初级线圈的励磁电流突然为0,此时,流过反馈线圈N3绕组中的电流正好接替原来励磁电流的作用,使变压器铁心中的磁感应强度由最大值Bm返回到剩磁所对应的磁感应强度Br位置,即:流过反馈线圈N3绕组中电流是由最大值逐步变化到0的。由此可知,反馈线圈N3绕组产生的感应电动势在对电源进行充电的同时,流过反馈线圈N3绕组中的电流也在对变压器铁心进行退磁。图1-18是图1-17中正激式变压器开关电源中几个关键点的电压、电流波形图。图1-18-a)是变压器次级线圈N2绕组整流输出电压波形,图1-18-b)是变压器次级线圈N3绕组整流输出电压波形,图1-18-c)是流过变压器初级线圈N1绕组和次级线圈N3绕组的电流波形。图1-17中,在Ton期间,控制开关K接通,输入电源Ui对变压器初级线圈N1绕组加电,初级线圈N1绕组有电流i1流过,在N1两端产生自感电动势的同时,在变压器次级线圈N2绕组的两端也同时产生感应电动势,并向负载提供输出电压。开关变压器次级线圈输出电压大小由(1-63)、(1-69)、(1-76)、(1-77)等式给出,电压输出波形如图1-18-a)。图1-18-c)是流过变压器初级线圈电流i1的波形。流过正激式开关电源变压器的电流与流过电感线圈的电流不同,流过正激式开关电源变压器中的电流有突变,而流过电感线圈的电流不能突变。因此,在控制开关K接通瞬间流过正激式开关电源变压器的电流立刻就可以达到某个稳定值,这个稳定电流值是与变压器次级线圈电流大小相关的。如果我们把这个电流记为i10,变压器次级线圈电流为i2,那么就是:i10=ni2,其中n为变压器次级电压与初级电压比。另外,流过正激式开关电源变压器的电流i1除了i10之外还有一个励磁电流,我们把励磁电流记为∆i1。从图1-18-c)中可以看出,∆i1就是i1中随着时间线性增长的部份,励磁电流∆i1由下式给出:当控制开关K由接通突然转为关断瞬间,流过变压器初级线圈的电流i1突然为0,由于变压器铁心中的磁通量不能突变,必须要求流过变压器次级线圈回路的电流也跟着突变,以抵消变压器初级线圈电流突变的影响,要么,在变压器初级线圈回路中将出现非常高的反电动势电压,把控制开关或变压器击穿。如果变压器铁心中的磁通产生突变,变压器的初、次级线圈就会产生无限高的反电动势,反电动势又会产生无限大的电流,而电流又会抵制磁通的变化,因此,变压器铁心中的磁通变化,最终还是要受到变压器初、次级线圈中的电流来约束的。因此,控制开关K由接通状态突然转为关断,变压器初级线圈回路中的电流突然为0时,变压器次级线圈回路中的电流i2一定正好等于控制开关K接通期间的电流i2(Ton+),与变压器初级线圈励磁电流∆i1被折算到变压器次级线圈的电流之和。但由于变压器初级线圈中励磁电流∆i1被折算到变压器次级线圈的电流∆i1/n的方向与原来变压器次级线圈的电流i2(Ton+)的方向是相反的,整流二极管D1对电流∆i1/n并不导通,因此,电流∆i1/n只能通过变压器次级线圈N3绕组产生的反电动势,经整流二极管D3向输入电压Ui进行反充电。在Ton期间,由于开关电源变压器的电流的i10等于0,变压器次级线圈N2绕组回路中的电流i2自然也等于0,所以,流过变压器次级线圈N3绕组中的电流,只有变压器初级线圈中励磁电流∆i1被折算到变压器次级线圈N3绕组回路中的电流i3(等于∆i1/n),这个电流的大小是随着时间下降的。一般正激式开关电源变压器的初级线圈匝数与次级反电动势能量吸收反馈线圈N3绕组的匝数是相等的,即:初、次级线圈匝数比为:1:1,因此,∆i1=i3。图1-18-c)中,i3用虚线表示。图1-18-b)正激式开关电源变压器次级反电动势能量吸收反馈线圈N3绕组的电压波形。这里取变压器初、次级线圈匝数比为:1:1,因此,当次级线圈N3绕组产生的反电动势电压超过输入电压Ui时,整流二极管D3就导通,反电动势电压就被输入电压Ui和整流二极管D3进行限幅,并把限幅时流过整流二极管的电流送回供电回路对电源或储能滤波电容进行充电。精确计算电流i3的大小,可以根据(1-80)式以及下面方程式求得,当控制开关K关闭时:上式中右边的第一项就是流过变压器初级线圈N1绕组中的最大励磁电流被折算到次级线圈N3绕组中的电流,第二项是i3中随着时间变化的分量。其中n为变压器次级线圈与初级线圈的变压比。值得注意的是,变压器初、次级线圈的电感量不是与线圈匝数N成正比,而是与线圈匝数N2成正比。由(1-82)式可以看出,变压器次级线圈N3绕组的匝数增多,即:L3电感量增大,变压器次级线圈N3绕组的电流i3就变小,并且容易出现断流,说明反电动势的能量容易释放完。因此,变压器次级线圈N3绕组匝数与变压器初级线圈N1绕组匝数之比n最好大于一或等于一。当N1等于N3时,即:L1等于L3时,上式可以变为:(1-83)式表明,当变压器初级线圈N1绕组的匝数与次级线圈N3绕组的匝数相等时,如果控制开关的占空比D小于0.5,电流i3是不连续的;如果占空比D等于0.5,电流i3为临界连续;如果占空比D大于0.5,电流i3为连续电流。这里顺便说明,在图1-17中,最好在整流二极管D1的两端并联一个高频电容(图中未画出)。其好处一方面可以吸收当控制开关K关断瞬间变压器次级线圈产生的高压反电动势能量,防止整流二极管D1击穿;另一方面,电容吸收的能量在下半周整流二极管D1还没导通前,它会通过放电(与输出电压串联)的形式向负载提供能量。这个并联电容不但可以提高电源的输出电压(相当于倍压整流的作用),还可以大大地减小整流二极管D1的损耗,提高工作效率。同时,它还会降低反电动势的电压上升率,对降低电磁辐射有好处。正激式变压器开关电源的优缺点为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S;也有人用电压或电流的有效值与其平均值之比,称为波形系数K。因此,电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki分别表示为:上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动系数S,和电压和电流的波形系数K,在一般可以分清楚的情况下一般都只写字母大写S或K。脉动系数S和波形系数K都是表征电压或者电流好坏的指标,S和K的值,显然是越小越好。S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。正激式变压器开关电源正好是在变压器的初级线圈被直流电压激励时,变压器的次级线圈向负载提供功率输出,并且输出电压的幅度是基本稳定的,此时尽管输出功率不停地变化,但输出电压的幅度基本还是不变,这说明正激式变压器开关电源输出电压的瞬态控制特性相对来说比较好;只有在控制开关处于关断期间,功率输出才全部由储能电感和储能电容两者同时提供,此时输出电压虽然受负载电流的影响,但如果储能电容的容量取得比较大,负载电流对输出电压的影响也很小。另外,由于正激式变压器开关电源一般都是选取变压器输出电压的一周平均值,储能电感在控制开关接通和关断期间都向负载提供电流输出,因此,正激式变压器开关电源的负载能力相对来说比较强,输出电压的纹波比较小。如果要求正激式变压器开关电源输出电压有较大的调整率,在正常负载的情况下,控制开关的占空比最好选取在0.5左右,或稍大于0.5,此时流过储能滤波电感的电流才是连续电流。当流过储能滤波电感的电流为连续电流时,负载能力相对来说比较强。当控制开关的占空比为0.5时,正激式变压器开关电源输出电压uo的幅值正好等于电压平均值Ua的两倍,流过滤波储能电感电流的最大值Im也正好是平均电流Io(输出电流)的两倍,因此,正激式变压器开关电源的电压和电流的脉动系数S都约等于2,而与反激式变压器开关电源的电压和电流的脉动系数S相比,差不多小一倍,说明正激式变压器开关电源的电压和电流输出特性要比反激式变压器开关电源好很多。正激式变压器开关电源的缺点也是非常明显的。其中一个是电路比反激式变压器开关电源多用一个大储能滤波电感,以及一个续流二极管。此外,正激式变压器开关电源输出电压受占空比的调制幅度,相对于反激式变压器开关电源来说要低很多,这个从(1-77)和(1-78)式的对比就很明显可以看出来。因此,正激式变压器开关电源要求调控占空比的误差信号幅度比较高,误差信号放大器的增益和动态范围也比较大另外,正激式变压器开关电源为了减少变压器的励磁电流,提高工作效率,变压器的伏秒容量一般都取得比较大(伏秒容量等于输入脉冲电压幅度与脉冲宽度的乘积,这里用US来表示),并且为了防止变压器初级线圈产生的反电动势把开关管击穿,正激式变压器开关电源的变压器要比反激式变压器开关电源的变压器多一个反电动势吸收绕组,因此,正激式变压器开关电源的变压器的体积要比反激式变压器开关电源的变压器的体积大。正激式变压器开关电源还有一个更大的缺点是在控制开关关断时,变压器初级线圈产生的反电动势电压要比反激式变压器开关电源产生的反电动势电压高。因为一般正激式变压器开关电源工作时,控制开关的占空比都取在0.5左右,而反激式变压器开关电源控制开关的占空比都取得比较小。正激式变压器开关电源在控制开关关断时,变压器初级线圈两端产生的反电动势电压是由流过变压器初级线圈的励磁电流产生的。因此,为了提高工作效率和降低反电动势电压的幅度,尽量减小正激式开关电源变压器初级线圈的励磁电流是值得考虑的。当控制开关的占空比为0.5时,在控制开关关断时刻,电源变压器初级会产生反电动势,反电动势产生的电流方向与输入电压Ui产生的电流方向相同,因此,控制开关两端的电压正好等于输入电压Ui与反电动势Up-之和,即:式中Ukp为控制开关关断时刻,控制开关两端的电压;Up-为变压器初级线圈产生反电动势电压的峰值。根据(1-68)式和图1-16-b可知,Up-一般都大于输入电压Ui,因此Ukp大于两倍Ui。一般正激式变压器开关电源都设置有一个反电动势能量吸收回路,如图1-17中的变压器反馈线圈N3绕组和整流二极管D3,此时,反电动势电压的峰值一般都被限幅到输入电压Ui的值,如果不考虑变压器初、次级线圈的漏感,则(1-88)式可以改写为:这个电压对于电源开关管来说是很高的。例如电源输入电压为交流220伏,经整流滤波后其最大值就是311伏,根据(1-89)式可求得Uk=622伏;如果输入电压为交流253伏(±15%),那么,可以求得Ukp=715伏,这还不算变压器初级线圈漏感产生的反电动势电压。一般图1-17中的变压器反馈线圈N3绕组和整流二极管D3,对变压器初级线圈N1绕组漏感产生的反电动势电压是无法进行吸收的,这一点需要特别注意。为了吸收变压器初级线圈N1绕组漏感产生的反电动势,在变压器初级线圈回路中还要专门设置一个反电动势吸收电路,这一方面内容后面还要更详细介绍。一般电源开关管的耐压都在650伏左右,因此,正激式变压器开关电源在输入电压为交流220伏的设备中很少使用,或者用两个电源开关管串联来使用。由于正激式变压器开关电源输出电压的瞬态控制特性相对来说比较好,因此,目前在一些对瞬态控制特性要求比较高的场合,用两个电源开关管串联的正激式变压器开关电源也逐步开始增加。正激式变压器开关电源电路参数的计算正激式变压器开关电源电路参数计算主要对储能滤波电感、储能滤波电容,以及开关电源变压器的参数进行计算。0.1.正激式变压器开关电源储能滤波电感和储能滤波电容参数的计算图1-17中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法基本相同,因此,我们可以直接引用(1-14)式和(1-18)式,即:式中Io为流过负载的电流(平均电流),当D=0.5时,其大小正好等于流过储能电感L最大电流iLm的二分之一;T为开关电源的工作周期,T正好等于2倍控制开关的接通时间Ton;ΔUP-P为输出电压的波纹电压,波纹电压ΔUP-P一般取峰-峰值,所以波纹电压等于电容器充电或放电时的电压增量,即:ΔUP-P=2ΔUc。同理,(1-90)式和(1-91)式的计算结果,只给出了计算正激式变压器开关电源储能滤波电感L和滤波电容C的中间值,或平均值,对于极端情况可以在平均值的计算结果上再乘以一个大于1的系数。关于电压平均值输出滤波电路的详细工作原理与参数计算,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容,这里不再赘述。正激式开关电源变压器参数的计算正激式开关电源变压器参数的计算主要从这几个方面来考虑。一个是变压器初级线圈的匝数和伏秒容量,伏秒容量越大变压器的励磁电流就越小;另一个是变压器初、次级线圈的匝数比,以及变压器各个绕组的额定输入或输出电流或功率。关于开关电源变压器的工作原理以及参数设计后面还要更详细分析,这里只做比较简单的介绍。正激式开关电源变压器初级线圈匝数的计算图1-17中,当输入电压Ui加于开关电源变压器初级线圈的两端,且变压器的所有次级线圈均开路时,流过变压器的电流只有励磁电流,变压器铁心中的磁通量全部都是由励磁电流产生的。当控制开关接通以后,励磁电流就会随时间增加而增加,变压器铁心中的磁通量也随时间增加而增加。根据电磁感应定理:式中E1为变压器初级线圈产生的电动势,L1为变压器初级线圈的电感量,为变压器铁心中的磁通量,Ui为变压器初级线圈的输入电压。其中磁通量还可以表示为:上式中,S为变压器铁心的导磁面积(单位:平方厘米),B为磁感应强度,也称磁感应密度(单位:高斯),即:单位面积的磁通量。把(1-93)式代入(1-92)式并进行积分:由此求得:(1-95)式就是计算单激式开关电源变压器初级线圈N1绕组匝数的公式。式中,N1为变压器初级线圈N1绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯),Br为变压器铁心的剩余磁感应强度(单位:高斯),Br一般简称剩磁,τ=Ton,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒),一般τ取值时要预留20%以上的余量,Ui为工电压,单位为伏。式中的指数是统一单位用的,选用不同单位,指数的值也不一样,这里选用CGS单位制,即:长度为厘米(cm),磁感应强度为高斯(Gs),磁通单位为麦克斯韦(Mx)。(1-95)式中,Ui×就是变压器的伏秒容量,即:伏秒容量等于输入脉冲电压幅度与脉冲宽度的乘积,这里我们把伏秒容量用US来表示。伏秒容量US表示:一个变压器能够承受多高的输入电压和多长时间的冲击。在一定的变压器伏秒容量条件下,输入电压越高,变压器能够承受冲击的时间就越短,反之,输入电压越低,变压器能够承受冲击的时间就越长;而在一定的工作电压条件下,变压器的伏秒容量越大,变压器的铁心中的磁感应强度就越低,变压器铁心就更不容易饱和。变压器的伏秒容量与变压器的体积以及功率无关,而只与磁通的变化量有关。必须指出Bm和Br都不是一个常量,当流过变压器初级线圈的电流很小时,Bm是随着电流增大而增大的,但当电流再继续增大时,Bm将不能继续增大,这种现象称磁饱和。变压器要避免工作在磁饱和状态。为了防止脉冲变压器饱和,一般开关变压器都在磁回路中留一定的气隙。由于空气的导磁率与铁心的导磁率相差成千上万倍,因此,只要在磁回路中留百分之一或几百分之一的气隙长度,其磁阻或者磁动势将大部分都落在气隙上,因此磁心也就很难饱和。在没有留气隙的变压器铁心中的Bm和Br的值一般都很高,但两者之间的差值却很小;留有气隙的变压器铁心,Bm和Br的值一般都要降低,但两者之间的差值却可以增大,气隙留得越大,两者之间的差值就越大,一般Bm可取1000~4000高斯,Br可取500~1000。顺便指出,变压器铁心的气隙留得过大,变压器初、次级线圈之间的耦合系数会降低,从而使变压器初、次级线圈的漏感增大,降低工作效率,并且还容易产生反电动势把电源开关管击穿。还有一些高导磁率、高磁通密度磁材料(如坡莫合金),这种变压器铁心的导磁率和Bm值都可达10000高斯以上,但这些高导磁率、高磁通密度磁材料一般只用于双激式开关电源变压器中。在(1-95)式中虽然没有看到变压器初级线圈电感这个变量,但从(1-92)式可以求得:上式表示,变压器初级线圈的电感量等于穿过变压器初级线圈的总磁通,与流过变压器初级线圈励磁电流之比,另外,由于线圈之间有互感作用,即励磁电流出了受输入电压的作用外,同时也受线圈电感量的影响,因此,变压器线圈的电感量与变压器线圈的匝数的平方成正比。从(1-95)式和(1-96)式可以看出,变压器初级线圈的匝数越多,伏秒容量和初级线圈的电感量也越大。因此,对于正激式开关电源变压器来说,如果不考虑变压器初级线圈本身的电阻损耗,变压器初级线圈的匝数是越多越好,电感量也是越大越好。但在进行变压器设计的时候,还要对成本以及铜阻损耗等因素一起进行考虑。变压器初、次级线圈匝数比的计算正激式开关电源输出电压一般是脉动直流的平均值,而脉动直流的平均值与控制开关的占空比有关,因此,在计算正激式开关电源变压器初、次级线圈的匝数比之前,首先要确定控制开关的占空比D,把占空比D确定之后,根据(1-77)式就可以计算出正激式开关电源变压器的初、次级线圈的匝数比:由(1-77)可以求得:上式中,n为正激式开关电源变压器次级线圈与初级线圈的匝数比,即:n=N2/N1;Uo为输出直流电压,Ui为变压器初级输入电压,D为控制开关的占空比。在正常输出负载的情况下,正激式开关电源控制开关的占空比D最好取值为0.5左右。这样,当负载比较轻的时候,占空比D会小于0.5,虽然储能滤波电感会出现断流,储能滤波电容充电时间缩短,放电时间增加,但由于输出电流比较小,储能滤波电容充、放电的电流也很小,所以在电容两端产生的电压纹波不会增大,反而减小;当输出负载比较重的时候,控制开关的占空比D会大于0.5,此时流过储能滤波电感的电流为连续电流,输出电流增大,储能滤波电容充电的时间增加,放电的时间缩短,因此,电容两端产生的电压纹波也不会增大很多。因此,如果正激式开关电源电路中的储能滤波电感和储能滤波电容充电以及控制开关占空比,三者取得合适,输出电压纹波会很小。正激式开关电源变压器次级反电动势能量吸收反馈线圈N3绕组与初线圈N1绕组的匝数比n一般为1:1,即:N3/N1=1。如果n大于1,反馈线圈N3绕组与整流二极管D3的限幅保护作用就会增强,但流过反馈线圈N3绕组和整流二极管D3的电流也会增大,从而会增加损耗;如果n小于1,反馈线圈N3绕组与整流二极管D3的限幅保护作用就会减弱,尖峰脉冲很容易把电源开关管击穿。正激式开关电源变压器次级反电动势能量吸收反馈线圈N3绕组匝数的计算与限幅稳压二极管的计算方法是很相似的,不过线圈匝数与稳压二极管的击穿电压正好相反,击穿电压取得越高限幅保护的作用反而越弱。这里顺便提一下,变压器线圈漆包线的电流密度一般取每平方毫米为2~3安培比较合适。当开关电源的工作频率取得很高时,电流密度最好取得小一些,或者用多股线代替单股线,以免电流在导体中产生趋肤效应,增大损耗使导线发热。另外,目前绕制变压器使用的漆包线大部分都不是纯铜线,因此电阻率相对比较大,把这些因素一起考虑,电流密度更不能取高。开关电源功率变压器的设计方法摘要:从开关电源功率变压器的特性和要求引出设计步骤及计算公式。其设计方法参考原电子工业部“指导性技术文件SJ/Z2921”。1开关电源功率变压器的特性功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位失真传输具有宽频带的脉冲能量。图1(a为加在脉冲变压器输入端的矩形脉冲波,图1(b为输出端得到的输出波形,可以看出脉冲变压器带来的波形失真主要有以下几个方面:(a输入波形(b输出波形(1上升沿和下降沿变得倾斜,即存在上升时间和下降时间;(2上升过程的末了时刻,有上冲,甚至出现振荡现象;(3下降过程的末了时刻,有下冲,也可能出现振荡波形;(4平顶部分是逐渐降落的。这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效电路。图中:Rsi——信号源Ui的内阻Rp——一次绕组的电阻Rm——磁心损耗(对铁氧体磁心,可以忽略T——理想变压器Rso——二次绕组的电阻RL——负载电阻C1、C2——一次和二次绕组的等效分布电容Lin、Lis——一次和二次绕组的漏感Lm1——一次绕组电感,也叫励磁电感n——理想变压器的匝数比,n=N1/N2图2脉冲变压器的等效电路将图2所示电路的二次回路折合到一次,做近似处理,合并某些参数,可得图3所示电路,漏感Li包括Lin和Lis,总分布电容C包括C1和C2;总电阻RS包括Rsi、RP和Rso;Lm1是励磁电感,和前述的Lm1相同;RL′是RL等效到一次侧的阻值,RL′=RL/n2,折合后的输出电压U′o=Uo/n。经过这样处理后,等效电路中只有5个元件,但在脉冲作用的各段时间内,每个元件并不都是同时起主要作用,我们知道任何一个脉冲波形可以分解成基波与许多谐波的叠加。脉冲的上升沿和下降沿包含着各种高频分量,而脉冲的平顶部分包含着各种低频分量。因此在上升、下降和平顶过程中,各元件(L、C等表现出来的阻抗也不一样,因此我们把这一过程分成几个阶段来分析,分别找出各阶段起主要作用的元件,而忽略次要的因素。例如,当输入信号为矩形脉冲时,可以分3个阶段来分析,即上升阶段、平顶阶段和下降阶段。(1上升阶段对于通常的正脉冲而言,上升阶段即脉冲前沿,信号中包含丰富的高频成分,当高频分量通过脉冲变压器时,在图3所示的等效电路中,C的容抗1/ωCτLm1稰кωLm1很大,相比起来,可将Lm1的作用忽略,而在串联的支路中,Li的作用即较为显著。于是可以把图3所示的等效电路简化成图4所示的等效电路。图3图2的等效电路图4图3的简化电路在这个电路中,频率越高,ωLi禫τ1/ωC越小,因而高频信号大多降在Li上,输出的高频分量就减少了,可见输入信号Usm前沿中所包含的高频分量就不能完全传输到输出端,频率越高的成分到达输出端越小,结果在输出端得到的波形前沿就和输入波形不同,即产生了失真。要想减小这种波形失真,就要尽量减小分布电容C(应减小变压器一次绕组的匝数。但又要得到一定的绕组电感量,所以需要用高磁导率的磁心。在绕制上也可以采取一些措施来减小分布电容,例如用分段绕法;为了减小漏感L1,可采用一、二次绕组交叠绕法等。(2平顶阶段脉冲的平顶包含着各种低频分量。在低频情况下,并联在输出端的3个元件中,电容C的容抗1/ωC很大,因此电容C可以忽略。同时在串联支路中,Li的感抗ωLi很小,也可以略去。所以又可以把图3电路简化为图5所示的低频等效电路。信号源也可以等效成电动势为Usm的直流电源。这里可用下述公式表达U′o=(UsmRL′e-T/τ/(Rs∠RL‖τ=Lm1(Rs+RL′RsRL′可见U′o为一下降的指数波形,其下降速度决定于时间常数τ,τ越大,下降越慢,即波形失真越小。为此,应尽量加大Lm1,而减小Rs和RL′,但这是有限的。如果Lm1太大,必然使绕组的匝数很多,这将导致绕组分布电容加大,致使脉冲上升沿变坏。图5图3的低频等效电路图6脉冲下降阶段的等效电路(3下降阶段下降阶段的信号源相当于直流电源Usm串联的开关S由闭合到断开的阶段,它与上升阶段虽然是相对的过程,但有两个不同;一是电感Lm1中有励磁电流,并开始释放,因此Lm1不能略去;二是开关S断开后,Rs便不起作用,由此得出下降阶段的等效电路,见图6。一般来说,在脉冲变压器平顶阶段以后,Lm1中存储了比较大的磁能,因此在开关断开后,会出现剧烈的振荡,并产生很大的下冲。为了消除下冲往往采用阻尼措施。2功率变压器的参数及公式2.1变压器的基本参数在磁路中,磁通集中的程度,称为磁通密度或磁感应强度,用B表示,单位是特斯拉(T,通常仍用高斯(GS单位,1T=104GS。另一方面,产生磁通的磁力称为磁场强度,用符号H表示,单位是A/mH=0.4πNI/li式中:N——绕组匝数I——电流强度li——磁路长度磁性材料的磁滞回线表示磁性材料被完全磁化和完全去磁化这一过程的磁特性变化。图7为一典型的磁化曲线。由坐标0点到a点这段曲线称起始磁化曲线。曲线中的一些关键点是十分重要的,BS:饱和磁通密度,Br:剩磁,HC:矫顽磁力。当Br越接近于BS值时,磁滞曲线的形状越接近于矩形,见图8(a,同时矫顽磁力HC越大时,磁滞曲线越宽,这表明这种磁性材料的磁化特性越硬,表明这种材料为硬磁性材料。当Br和BS相差越大,矫顽磁力HC越小时,即磁滞曲线越瘦,表明这种材料为软磁性材料,脉冲变压器的磁心材料应选用软磁性材料,见图8(b。图7不带气隙的磁滞回线图8硬/软磁性材料和磁滞回线(a硬磁材料(b软磁材料如果在磁心中开一个气隙,将建立起一个有气隙的磁路,它会改变磁路的有效长度。因为空气隙的磁导率为1,所以有效磁路长度le为le=li+μilg式中:li——磁性材料中的磁路长度lg——空气隙的磁路长度μi——磁性材料的磁导率对一个给定安匝数,有空气隙磁心的磁通密度要比没有空气隙的磁通密度小。2.2设计变压器的基本公式为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:TBm=(Up×104/KfNpSc式中:Up——变压器一次绕组上所加电压(Vf——脉冲变压器工作频率(HzNp——变压器一次绕组匝数(匝Sc——磁心有效截面积(cm2K——系数,对正弦波为4.44,对矩形波为4.0一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。变压器输出功率可由下式计算(单位:WPo=1.16BmfjScSo×10-5式中:j——导线电流密度(A/mm2Sc——磁心的有效截面积(cm2So——磁心的窗口面积(cm23对功率变压器的要求(1漏感要小图9是双极性电路(半桥、全桥及推挽等典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。图9双极性功率变换器波形功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。(2避免瞬态饱和一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。(3要考虑温度影响开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40℃考虑,磁心温度可达60~80℃,一般选择Bm=0.2~0.4T,即2000~4000GS。(4合理进行结构设计从结构上看,有下列几个因素应当给予考虑:漏磁要小,减小绕组的漏感;便于绕制,引出线及变压器安装要方便,以利于生产和维护;便于散热。4磁心材料的选择软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS左右。开关电源用铁氧体磁性材应满足以下要求:(1具有较高的饱和磁通密度Bs和较低的剩余磁通密度Br磁通密度Bs的高低,对于变压器和绕制结果有一定影响。从理论上讲,Bs高,变压器的绕组匝数可以减小,铜损也随之减小。(2)在高频下具有较低的功率损耗铁氧体的功率损耗,不仅影响电源输出效率,同时会导致磁心发热,波形畸变等不良后果。变压器的发热问题,在实际应用中极为普遍,它主要是由变压器的铜损和磁心损耗引起的。如果在设计变压器时,Bm选择过低,绕组匝数过多,就会导致绕组发热,并同时向磁心传输热量,使磁心发热。反之,若磁心发热为主体,也会导致绕组发热。选择铁氧体材料时,要求功率损耗随温度的变化呈负温度系数关系。这是因为,假如磁心损耗为发热主体,使变压器温度上升,而温度上升又导致磁心损耗进一步增大,从而形成恶性循环,最终将使功率管和变压器及其他一些元件烧毁。因此国内外在研制功率铁氧体时,必须解决磁性材料本身功率损耗负温度系数问题,这也是电源用磁性材料的一个显著特点,日本TDK公司的PC40及国产的R2KB等材料均能满足这一要求。(3)适中的磁导率相对磁导率究竟选取多少合适呢?这要根据实际线路的开关频率来决定,一般相对磁导率为2000的材料,其适用频率在300kHz以下,有时也可以高些,但最高不能高于500kHz。对于高于这一频段的材料,应选择磁导率偏低一点的磁性材料,一般为1300左右。(4)较高的居里温度居里温度是表示磁性材料失去磁特性的温度,一般材料的居里温度在200℃以上,但是变压器的实际工作温度不应高于80℃,这是因为在100℃以上时,其饱和磁通密度Bs已跌至常温时的70%。因此过高的工作温度会使磁心的饱和磁通密度跌落的更严重。再者,当高于100℃时,其功耗已经呈正温度系数,会导致恶性循环。对于R2KB2材料,其允许功耗对应的温度已经达到110℃,居里温度高达240℃,满足高温使用要求。5开关电源功率变压器的设计方法5.1双极性开关电源变压器的计算设计前应确定下列基本条件:电路形式,开关工作频率,变压器输入电压幅值,开关功率管最大导通时间,变压器输出电压电流,输出侧整流电路形式,对漏感及分布电容的要求,工作环境条件等。(1)确定磁心尺寸1)求变压器计算功率PtPt的大小取决于变压器输出功率及输出侧整流电路形式:全桥电路,桥式整流:Pt=(1+1/nPo半桥电路,双半波整流:Pt=(1/n+Po推挽电路,双半波整流:Pt=(/n+Po式中:Po=UoIo,直流输出功率。Pt可在(2~2.8)Po范围内变化,Po及Pt均以瓦(P)为单位。n=N1/N2,变压匝数比。2)确定磁通密度BmBm与磁心的材料、结构形式及工作频率等因素有关,又要考虑温升及磁心不饱和等要求。对于铁氧体磁心多采用0.3T(特斯拉)左右。3)计算磁心面积乘积SpSp等于磁心截面积Sc(cm2)及窗口截面积So(cm2)的乘积,即Sp=ScSo=[(Pt×104/4BmfKwKj]1.16(cm4式中:Kw——窗口占空系数,与导线粗细、绕制工艺及漏感和分布电容的要求等有关。一般低压电源变压器取Kw=0.2~0.4。Kj——电流密度系数,与铁心形式、温升要求等有关。对于常用的E型磁心,当温升要求为25℃时,Kj=366;要求50℃时,Kj=534。环型磁心,当温升要求为25℃时,Kj=250;要求50℃时,Kj=365。由Sp值选择适用于或接近于Sp的磁性材料、结构形式和磁心规格。(2)计算绕组匝数1)1)一次绕组匝数:N1=(Up1ton×10-2/2BmSc(匝式中:Up1——一次绕组输入电压幅值(V)ton——一次绕组输入电压脉冲宽度(µs)2)2)二次绕组匝数:N2=(Up2N1)/Up1(匝)Ni=(UpiN1/Up1(匝式中:Up2…Upi——二次绕组输出电压幅值(V)(3)选择绕组导线导线截面积Smi=Ii/j(mm2式中:Ii——各绕组电流有效值(A)j——电流密度j=KjSp-0.14×10-2(A/mm2(4)损耗计算1)绕组铜损Pmi=Ii2Rai(P式中:Rai——各绕组交流电阻(Ω),Ra=KrRd,Rd——导线直流电阻,Kr——趋表系数,Kr=(D/22/(D-△·△,D——圆导线直径(mm),△——穿透深度(mm),圆铜导线△=66.1/f0.5(f:电流频率,Hz)变压器为多绕组时,总铜损为Pm=PIi2Rai(P2)磁心损耗Pc=PcoGc式中:Pco——在工作频率及工作磁通密度情况下单位质量的磁心损耗(P/kg)Gc——磁心质量(kg)3)变压器总损耗Pz=Pm+Pc(P)(5)温升计算变压器由于损耗转变成热量,使变压器温度上升,其温升数值与变压器表面积ST有关ST=式中:Sp——磁心面积乘积(cm4)KS——表面积系数,E型磁心KS=41.3,环型磁心KS=50.95.2单极性开关电源变压器的计算设计前应确定下列基本条件:电路形式,工作频率,变换器输入最高和最低电压,输出电压电流,开关管最大导通时间,对漏感及分布电容的要求,工作环境条件等。(1)单端反激式计算1)变压器输入输出电压一次绕组输入电压幅值UP1=Ui-△U1式中:Ui——变换器输入直流电压(V)△U1——开关管及线路压降(V)二次绕组输出电压幅值UP2=U02+△U2UPi=U0i+△Ui式中:U02…U0i——直流输出电压(V)△U2…△Ui——整流管及线路压降(V)2)一次绕组电感临界值(H式中:n——变压器匝数比n=tonUp1/toffUp2ton——额定输入电压时开关管导通时间(µs)toff——开关管截止时间(µs)T——开关电源工作周期(µs),T=1/f,f:工作频率(Hz)Po——变压器输出直流功率(P)通常要求一次绕组实际电感Lp1≥Lmin3确定工作磁通密度单端反激式变压器工作在单向脉冲状态,一般取饱和磁通密度值(Bs)的一半,即脉冲磁通密度增量△Bm=BS/2(T4)计算磁心面积乘积Sp=392Lp1Ip1D12/△Bm(cm4式中:Ip1——一次绕组峰值电流Ip1=2Po/Up1minDmax(A式中:Up1min——变压器输入最低电压幅值(V)Dmax——最大占空比,Dmax=tonmax/TD1——一次绕组导线直径(mm),由一次绕组电流有效值I1确定,单向脉冲时I1=Ip1(ton/T)0.55)空气隙长度lg=0.4πLp1Ip12/△Bm2SC(cm6)绕组匝数计算一次绕组,有气隙时N1=△Bmlg×104/0.4πIp1(匝无气隙时(匝式中:LC——磁心磁路长度(cm)µe——磁心有效磁导率,由工作的磁通密度和直流磁场强度及磁性材料决定,查阅磁心规格得出。二次绕组N2=[Up2(1-Dmax/Up1minDmax]N1Ni=[Upi(1-Dmax/UpiminDmax]N1(2)单端正激式计算单端正激式电路工作的特点是一、二次绕组同时工作,另加去磁绕组,因此计算方法与双极性电路类似。1)二次绕组峰值电流等于直流输出电流,即IP2=I022)二次绕组电压幅值开关电源功率变压器的设计方法Up2=(Uo2+△U2/D(V式中:Uo2——输出直流电压(V)△U2——整流管及线路压降(V)D——额定工作状态时的占空比D=ton/T3)变压器输出功率P2=P(DUp2Ip2(P式中:Up2——变压器输出电压幅值(V)Ip2——二次绕组峰值电流(A)4)确定磁心体积Ve=(12.5βP2×103/f(cm3Αいβ——计算系数,工作频率f=30~50kHz时,β=0.3由Ve值选择接近尺寸的磁心。5)一次绕组匝数N1=(Up1ton×10-2/f(匝式中:Up1——变压器输入额定电压幅值(V)6)二次绕组匝数N2=(Up2/Up1N1Ni=UpiN1/Up17)去磁绕组匝数NH=N18)绕组电流有效值二次侧:I2=Ip2一次侧:I1=Up2I2/Up1去磁:IH=(5~10%I1上述仅是常规计算方法,由于所选用材料及工艺的不同,有些数据应做相应的调整。高頻FLYBACK變壓器(偶合電感器)最佳之設計莊榮源飛瑞股份前言:由於市場日益競爭,如何將產品的價格降低,體積縮小,品質提高變成現今大家所共同努力的目標.而在SwitchPowerSupply的領域裡,變壓器是非常重要的一部份,而Flyback變壓器更在其中佔了舉足輕重的地位.如何將變壓器最佳化,就顯得額外的重要.我們可以從很多SPS書籍中獲得Flyback變壓器的設計方法,雖然不盡相同,卻是大同小異.就一個設計者的角度來說,設計一個Flyback變壓器並不難,只要將設計的參數訂定,依照書上所寫的設計步驟,一個變壓器就誕生了,在這變壓器誕生的同時,你難道不會懷疑,這變壓器是否為最佳的變壓器呢?因為在這設計的參數裡還隱藏了不確定的因數.例如Flyback變壓器初級測電感值參數的訂定,你如何能確定你剛開始設計所選定的感值對這顆變壓器是最佳感值呢?本文將針對設計參數做進一步的探討,以達到變壓器的最佳化.變壓器設計:在實際設計變壓器時,有兩個原則是必須注意到的:溫升:這是設計變壓器最主要的項目和目的,安規裡有規定變壓器的最高溫升,變壓器的溫升需在安規的限制範圍內.例如:classA的絕對溫度不能超過90°C;classB不能超過110°C等等,這都是我們設計必須遵循的準則.經濟:想在這市場上與人競爭,經濟考量是不可或缺的,尤其是變壓器往往是機器COST中的主要部分之一,所以如何將變壓器的價格,體積,品質掌握到最佳,就是我們所努力的方向.設計步驟:

要將變壓器最佳化,需將不同的參數重複代入計算,如果利用Excel的方程式或利用程式語言將公式寫下來,這樣將變得很簡單,只要改變參數就可得到結果.(1).參數的訂定:在設計變壓器之前,需先預定一些參數,很多書籍上這些參數都不同,不同的設計參數,設計流程亦不同,現在針對Flyback變壓器最常用的設計參數:輸入電壓:Vin,輸入的頻率:fs,最大Dutycycle:Dmax,初級與次級圈數比:N,初級電感值:Lp,輸出電壓:Vo,輸出最大:Wo.線圈的電流密度:J,最大磁通密度:Bmax,最大繞線因數:Kw(2)由這些設計參數算出:Dutyon(初級測導通的比例)Dutyoff(次級測導通的比例)初級交流電流值(ΔIpp)初級電流Peak值(Ip(peak))初級電流RMS值(Irms)初級線圈的線徑(Φp)次級電流Peak值(Ip(peak))次級電流RMS值(Irms)初級線圈的線徑(Φs)有效磁路面積與鐵心可繞面積的乘積(Ac*Aw)在由Aw*Ac選擇適當的鐵心.設計參數裡有些是定死的,例如:Vin,fs(IC操作頻率),Dmax(ICmaxdutycycle),Vo,Wo.有些是依經驗所定的,例如:電流密度:J(classA自然散熱<500A/,classB<700A/);最大磁通密度Bmax(100°C飽和磁通密度的80%);最大繞線因數Kw(若將漆包線的絕緣厚度算入與減掉安規間距,EE與EIcore<0.4).有些是可變的,也是最不確定設計參數,例如:初級與次級圈數比N,初級電感值Lp;N的決定條件為:即使再最低壓時,亦能提供穩定的輸出電壓和能量.因N直接影響到Dutycycle的大小,N愈大,Dutyon愈大,Ip(rms)愈小,銅損愈小,Aw*Ac愈小所以IC的Dutymax就是選定N的限制,可以從下式訂定N值..至於感值Lp的選定直接影響core的大小和操作的模式(CCMorDCM),也是我們所要探討的目標.設計理論:在剛開始不知道系統操作於何種模式下時,分別對CCM與DCM不同操作模式下做理論推導.操作於CCM模式時由將初級與次級圈數比代入;……(I)由,將代入……(II)若不考慮效率問題,則將(II)代入……(III);……(Ⅳ)由磁通連續定則……(Ⅴ);……(VI)……(Ⅶ)……(Ⅷ)由:初級導線面積;:次級導線面積若不將安規間距與漆包線的絕緣厚度考慮進去,則……(Ⅸ)由(gauss)(cm)乘以IX……(X)若將安規間距與漆包線的絕緣厚度考慮進去(如此的做法比較不會因考慮集膚效應採用多股線而產生誤差)在不考慮溫度效應下,集膚深度(cm)選擇半徑小於集膚深度的線徑.則:初級導線總面積;:次級導線總面積:安規間距(margintape)所佔的面積操作於DCM模式下……(i)由,將代入……(ii)由法拉第定律……(iii)……(iv)……(v)……(vi)之後則同CCM……(vii)將以上公式用Excel的方程式或利用程式語言將公式寫下來,將設計參數代入後,用DCM算出其Dutyon與Dutyoff,若,則操作於DCM,則操作於Boundary,則操作於CCM以此作為分隔CCM與DCM.若只改變Lp的值,其餘預定參數固定,將得到一Lp與AcAw的關係如下.感值愈大,所需的變壓器愈大.變壓器core的選擇:再選擇core之前,有幾點是必須注意與了解的:coreloss的溫度特性:依據機器所規定的周溫,當core的溫度上升時,我們希望其coreloss是隨著溫度而下降,如此才比較不會有熱跑脫的現象發生.當銅損=鐵損時,效率最高.變壓器的大小直接影響到系統的操作模式,所以必須清楚DCM與CCM的優缺點,才能選擇到最適合需求的core.符合最經濟的原則:也就是說10元能符合規格與需求決不多花1毛錢.選擇的core愈大,效率不一定愈高,但散熱面積愈大,溫升會愈低

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论