河北省泊头四中学2024届数学九年级第一学期期末复习检测试题含解析_第1页
河北省泊头四中学2024届数学九年级第一学期期末复习检测试题含解析_第2页
河北省泊头四中学2024届数学九年级第一学期期末复习检测试题含解析_第3页
河北省泊头四中学2024届数学九年级第一学期期末复习检测试题含解析_第4页
河北省泊头四中学2024届数学九年级第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省泊头四中学2024届数学九年级第一学期期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若是方程的一个根.则代数式的值是()A. B. C. D.2.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15° B.30° C.45° D.60°3.如图,在高2m,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要()A.2m B.(2+2)m C.4m D.(4+2)m4.已知关于x的方程x2﹣x+m=0的一个根是3,则另一个根是()A.﹣6 B.6 C.﹣2 D.25.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有()A.1个 B.3个 C.4个 D.5个6.下列图形中,是轴对称图形但不是中心对称图形的是()A. B.C. D.7.抛物线的顶点坐标是()A.(2,1) B. C. D.8.下列两个图形,一定相似的是()A.两个等腰三角形 B.两个直角三角形C.两个等边三角形 D.两个矩形9.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点D.图象的顶点坐标为(﹣1,2)10.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为(

)A.2cm B.3cm C.4cm D.1cm二、填空题(每小题3分,共24分)11.不等式组的整数解的和是__________.12.在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是___.13.(2011•南充)如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P=_________度.14.若,则的值为__________.15.抛物线的顶点坐标是______.16.分解因式____________.17.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为______cm.18.如图,AB为⊙O的直径,C、D为⊙O上的点,弧AD=弧CD.若∠CAB=40°,则∠CAD=_____.三、解答题(共66分)19.(10分)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD的中点,连接OE.过点C作CF//BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.20.(6分)篮球课上,朱老师向学生详细地讲解传球的要领时,叫甲、乙、丙、丁四位同学配合朱老师进行传球训练,朱老师把球传给甲同学后,让四位同学相互传球,其他人观看体会,当甲同学第一个传球时,求甲同学传给下一个同学后,这个同学再传给甲同学的概率21.(6分)如图,在平面直角坐标系中,已知三个顶点的坐标分别是,,.(1)请画出关于轴对称的;(2)以点为位似中心,相似比为1:2,在轴右侧,画出放大后的;22.(8分)如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=6,DE=1,求⊙O的半径长.23.(8分)一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?24.(8分)已知AB是⊙O的直径,C,D是⊙O上AB同侧两点,∠BAC=26°.(Ⅰ)如图1,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图2,过点C作⊙O的切线,交AB的延长线于点E,若OD∥EC,求∠ACD的大小.25.(10分)夏季多雨,在山坡处出现了滑坡,为了测量山体滑坡的坡面的长度,探测队在距离坡底点米处的点用热气球进行数据监测,当热气球垂直上升到点时观察滑坡的终端点时,俯角为,当热气球继续垂直上升90米到达点时,探测到滑坡的始端点,俯角为,若滑坡的山体坡角,求山体滑坡的坡面的长度.(参考数据:,结果精确到0.1米)26.(10分)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据一元二次方程的解的定义即可求出答案.【题目详解】解:由题意可知:∴故答案为:C.【题目点拨】本题考查的知识点是根据一元二次方程的解求代数式的值,解题的关键是将已给代数式进行变形,使之与所给条件有关系,即可得解.2、B【解题分析】解:∵关于x的一元二次方程有两个相等的实数根,∴△=,解得:sinα=,∵α为锐角,∴α=30°.故选B.3、B【解题分析】如图,由平移的性质可知,楼梯表面所铺地毯的长度为:AC+BC,∵在△ABC中,∠ACB=90°,∠BAC=30°,BC=2m,∴AB=2BC=4m,∴AC=,∴AC+BC=(m).故选B.点睛:本题的解题的要点是:每阶楼梯的水平面向下平移后刚好与AC重合,每阶楼梯的竖直面向右平移后刚好可以与BC重合,由此可得楼梯表面所铺地毯的总长度为AC+BC.4、C【分析】由于已知方程的二次项系数和一次项系数,所以要求方程的另一根,可利用一元二次方程的两根之和与系数的关系.【题目详解】解:设a是方程x1﹣5x+k=0的另一个根,则a+3=1,即a=﹣1.故选:C.【题目点拨】此题主要考查一元二次方程的根,解题的关键是熟知一元二次方程根与系数的关系.5、B【解题分析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;由x=-3时,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正确;因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正确;根据图像可知当x<1时,y随x增大而增大,当x>1时,y随x增大而减小,可知若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1=y3<y1,故(4)不正确;根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.

抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.6、D【解题分析】根据轴对称图形与中心对称图形的概念,对各选项分析判断即可得解.【题目详解】A、是轴对称图形,也是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项正确.故选:D.【题目点拨】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、D【分析】根据抛物线顶点式解析式直接判断即可.【题目详解】解:抛物线解析式为:,∴抛物线顶点坐标为:(﹣2,1)故选:D.【题目点拨】此题根据抛物线顶点式解析式求顶点坐标,掌握顶点式解析式的各项的含义是解此题的关键.8、C【解题分析】根据相似三角形的判定方法一一判断即可;所应用判断方法:两角对应相等,两三角形相似.【题目详解】解:∵两个等边三角形的内角都是60°,

∴两个等边三角形一定相似,

故选C.【题目点拨】本题考查相似三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.9、D【解题分析】二次函数的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k),据此进行判断即可.【题目详解】∵﹣1<0,∴函数的开口向下,图象有最高点,这个函数的顶点是(﹣1,2),对称轴是x=﹣1,∴选项A、B、C错误,选项D正确,故选D.【题目点拨】本题考查了二次函数的性质,熟练掌握抛物线的开口方向,对称轴,顶点坐标是解题的关键.10、A【解题分析】试题分析:本题的关键是利用弧长公式计算弧长,再利用底面周长=展开图的弧长可得.解答:解:L=,解R=2cm.故选A.考点:弧长的计算.二、填空题(每小题3分,共24分)11、【分析】先求出不等式的解集,再求出不等式组的解集,即可得出答案.【题目详解】解①得:x<1;解②得:x>−3;∴原不等式组的解集为−3<x<1;∴原不等式组的所有整数解为−2、−1、0∴整数解的和是:-2-1+0=-3.故答案为:-3.【题目点拨】此题考查解一元一次不等式组,解题关键在于掌握解不等式组.12、(﹣5,3)【题目详解】解:关于原点对称的点的坐标是横、纵坐标都互为相反数,从而点P(5,﹣3)关于原点对称的点的坐标是(﹣5,3).故答案为:(﹣5,3).13、50【解题分析】∵PA,PB是⊙O是切线,A,B为切点,∴PA=PB,∠OBP=90°,∵OA=OB,∴∠OBA=∠BAC=25°,∴∠ABP=90°﹣25°=65°,∵PA=PB,∴∠BAP=∠ABP=65°,∴∠P=180°﹣65°﹣65°=50°,故答案为:50°.14、【分析】直接利用已知得出,代入进而得出答案.【题目详解】∵∴∴==故填:.【题目点拨】此题主要考查了比例的性质,正确运用已知变形是解题关键.15、(0,-3).【解题分析】试题解析:二次函数,对称轴当时,顶点坐标为:故答案为:16、【分析】先提取公因式,再利用平方差公式即可求解.【题目详解】故答案为:.【题目点拨】此题主要考查因式分解,解题的关键是熟知因式分解的方法.17、5【分析】先根据垂径定理得出AC的长,再由勾股定理即可得出结论.【题目详解】连接OA,∵OC⊥AB,AB=8,∴AC=4,∵OC=3,∴OA=故答案为:5.【题目点拨】此题考查勾股定理、垂径定理及其推论,解题关键在于连接OA作为辅助线.18、25°【分析】先求出∠ABC=50°,进而判断出∠ABD=∠CBD=25°,最后用同弧所对的圆周角相等即可得出结论.【题目详解】解:如图,连接BC,BD,∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵弧AD=弧CD∴∠ABD=∠CBD=∠ABC=25°,∴∠CAD=∠CBD=25°.故答案为:25°.【题目点拨】本题考查的是圆周角定理,直径所对的圆周角是直角,直角三角形的性质,解本题的关键是作出辅助线.三、解答题(共66分)19、(1)详见解析;(2)详见解析【分析】(1)根据题意得出,,根据AAS即可证明;(2)由(1)可得到,再根据菱形的性质得出,即可证明平行四边形OCFD是矩形.【题目详解】证明:(1),,.E是CD中点,,又(AAS)(2),,.,四边形OCFD是平行四边形,平行四边形ABCD是菱形,.平行四边形OCFD是矩形.【题目点拨】此题考查矩形的判定和全等三角形的判定与性质,平行四边形的性质,解题关键在于利用全等三角形的性质进行解答.20、.【分析】画出树状图,然后找到甲同学传给下一个同学后,这个同学再传给甲同学的结果数多即可得.【题目详解】由题意可画如下的树状图:由树状图可知,共有9种等可能性的结果,其中甲同学传给下一个同学后,这个同学再传给甲同学的结果有3种甲同学传给下一个同学后,这个同学再传给甲同学的概率.【题目点拨】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21、(1)见解析;(2)见解析.【分析】(1)利用关于轴对称点的性质:横坐标相等,纵坐标互为相反数可以求出.(2)利用位似图像的性质得出对应点位置.【题目详解】如图所示:画出轴对称的.画出放大后的位似.【题目点拨】本题考查了关于对称轴对称的点的性质以及位似的性质.22、(1)见解析;(2)⊙O的半径为1.【分析】(1)根据圆周角定理即可得出∠A=∠D,∠C=∠ABD,从而可求证△AEC∽△DEB;

(2)由垂径定理可知BE=3,设半径为r,由勾股定理可列出方程求出r.【题目详解】解:(1)根据“同弧所对的圆周角相等”,

得∠A=∠D,∠C=∠ABD,

∴△AEC∽△DEB

(2)∵CD⊥AB,O为圆心,

∴BE=AB=3,

设⊙O的半径为r,

∵DE=1,则OE=r−1,

在Rt△OEB中,

由勾股定理得:OE2+EB2=OB2,

即:(r−1)2+32=r2,

解得r=1,即⊙O的半径为1.【题目点拨】本题考查圆的综合问题,涉及相似三角形的判定与性质,勾股定理,垂径定理等知识,综合程度较高,需要灵活运用所学知识.23、渔船没有进入养殖场的危险.【解题分析】试题分析:点B作BM⊥AH于M,过点C作CN⊥AH于N,利用直角三角形的性质求得CK的长,若CK>4.8则没有进入养殖场的危险,否则有危险.试题解析:过点B作BM⊥AH于M,∴BM∥AF.∴∠ABM=∠BAF=30°.在△BAM中,AM=AB=5,BM=.过点C作CN⊥AH于N,交BD于K.在Rt△BCK中,∠CBK=90°-60°=30°设CK=,则BK=在Rt△ACN中,∵∠CAN=90°-45°=45°,∴AN=NC.∴AM+MN=CK+KN.又NM=BK,BM=KN.∴.解得∵5海里>4.8海里,∴渔船没有进入养殖场的危险.答:这艘渔船没有进入养殖场危险.24、(Ⅰ)∠ABC=64°,∠ODC=71°;(Ⅱ)∠ACD=19°.【分析】(I)连接OC,根据圆周角定理得到∠ACB=90°,根据三角形的内角和得到∠ABC=65°,由等腰三角形的性质得到∠OCD=∠OCA+∠ACD=70°,于是得到结论;(II)如图2,连接OC,根据圆周角定理和切线的性质即可得到结论.【题目详解】解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=26°,∴∠ABC=64°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD=×90°=45°,∵OA=OC,∴∠OAC=∠OCA=26°,∴∠OCD=∠OCA+∠ACD=71°,∵OD=OC,∴∠ODC=∠OCD=71°;(Ⅱ)如图2,连接OC,∵∠BAC=26°,∴∠EOC=2∠A=52°,∵CE是⊙O的切线,∴∠OC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论