2024届山东省济宁市名校数学九年级第一学期期末达标测试试题含解析_第1页
2024届山东省济宁市名校数学九年级第一学期期末达标测试试题含解析_第2页
2024届山东省济宁市名校数学九年级第一学期期末达标测试试题含解析_第3页
2024届山东省济宁市名校数学九年级第一学期期末达标测试试题含解析_第4页
2024届山东省济宁市名校数学九年级第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省济宁市名校数学九年级第一学期期末达标测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网 B.球会过球网但不会出界C.球会过球网并会出界 D.无法确定2.如图,AB是半圆O的直径,半径OC⊥AB于O,AD平分∠CAB交于点D,连接CD,OD,BD.下列结论中正确的是()A.AC∥OD B.C.△ODE∽△ADO D.3.如图,在△ABC中,D,E分别是AB,BC边上的点,且DE∥AC,若,,则△ACD的面积为()A.64 B.72 C.80 D.964.如图,将(其中∠B=33°,∠C=90°)绕点按顺时针方向旋转到的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A. B. C. D.5.若,则的值等于()A. B. C. D.6.如图,⊙O的半径为4,点A为⊙O上一点,OD⊥弦BC于点D,OD=2,则∠BAC的度数是().A.55° B.60° C.65° D.70°7.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为(

)A.12π B.24π C.36π D.48π8.正六边形的边心距与半径之比为()A. B. C. D.9.如图,在菱形中,,,为中点,是上一点,为上一点,且,,交于点,关于下列结论,正确序号的选项是()①,②,③④A.①② B.①②③ C.①②④ D.①③④10.在同一坐标系中,二次函数的图象与一次函数的图象可能是()A. B.C. D.11.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:;;;,其中正确的是()A. B. C. D.12.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A. B.C. D.二、填空题(每题4分,共24分)13.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.14.点在抛物线上,则__________.(填“>”,“<”或“=”).15.如图,内接于,则的半径为__________.16.如图,△ABC为⊙O的内接三角形,若∠OBA=55°,则∠ACB=_____.17.计算:(π﹣3)0+(﹣)﹣2﹣(﹣1)2=_____.18.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=________三、解答题(共78分)19.(8分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?20.(8分)某商场经营某种品牌的玩具,购进时的单价30元,根据市场调查:在一段时间内,销售单价是40元时,销售是600件,而销售单价每涨1元,就会少售出10件玩具.(1)若设该种品脚玩具上x元(0<x<60)元,销售利润为w元,请求出w关于x的函数关系式;(2)若想获得最大利润,应将销售价格定为多少,并求出此时的最大利润.21.(8分)在综合实践课中,小慧将一张长方形卡纸如图1所示裁剪开,无缝隙不重叠的拼成如图2所示的“”形状,且成轴对称图形.裁剪过程中卡纸的消耗忽略不计,若已知,,.求(1)线段与的差值是___(2)的长度.22.(10分)如图,甲分为三等分数字转盘,乙为四等分数字转盘,自由转动转盘.(1)转动甲转盘,指针指向的数字小于3的概率是;(2)同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.23.(10分)(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;线段OD的长为.②求∠BDC的度数;(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.24.(10分)已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.25.(12分)如图,二次函数y=﹣x2+x+3的图象与x轴交于点A、B(B在A右侧),与y轴交于点C.(1)求点A、B、C的坐标;(2)求△ABC的面积.26.如图,在中,,,垂足分别为,与相交于点.(1)求证:;(2)当时,求的长.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A(0,2)代入得:36a+2.6=2,解得:∴y与x的关系式为当x=9时,∴球能过球网,当x=18时,∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.2、A【分析】A.根据等腰三角形的性质和角平分线的性质,利用等量代换求证∠CAD=∠ADO即可;

B.过点E作EF⊥AC,根据角平分线上的点到角的两边的距离相等可得OE=EF,再根据直角三角形斜边大于直角边可证;

C.两三角形中,只有一个公共角的度数相等,其它两角不相等,所以不能证明③△ODE∽△ADO;

D.根据角平分线的性质得出∠CAD=∠BAD,根据在同圆或等圆中,相等的圆周角所对的弦相等,可得CD=BD,又因为CD+BD>BC,又由AC=BC可得AC<2CD,从而可判断D错误.【题目详解】解:解:A.∵AB是半圆直径,

∴AO=OD,

∴∠OAD=∠ADO,

∵AD平分∠CAB交弧BC于点D,

∴∠CAD=∠DAO=∠CAB,

∴∠CAD=∠ADO,

∴AC∥OD,

∴A正确.

B.如图,过点E作EF⊥AC,

∵OC⊥AB,AD平分∠CAB交弧BC于点D,

∴OE=EF,

在Rt△EFC中,CE>EF,

∴CE>OE,

∴B错误.

C.∵在△ODE和△ADO中,只有∠ADO=∠EDO,

∵∠COD=2∠CAD=2∠OAD,

∴∠DOE≠∠DAO,

∴不能证明△ODE和△ADO相似,

∴C错误;D.∵AD平分∠CAB交于点D,∴∠CAD=∠BAD.∴CD=BD∴BC<CD+BD=2CD,∵半径OC⊥AB于O,∴AC=BC,∴AC<2CD,∴D错误.故选A.【题目点拨】本题主要考查相似三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理,等腰三角形的性质,三角形内角和定理等知识点的灵活运用,此题步骤繁琐,但相对而言,难易程度适中,很适合学生的训练.3、C【分析】根据题意得出BE:CE=1:4,由DE∥AC得出△DBE和△ABC相似,根据相似三角形面积的比等于相似比的平方求出△ABC的面积,然后求出△ACD的面积.【题目详解】∵S△BDE=4,S△CDE=16,

∴S△BDE:S△CDE=1:4,

∵△BDE和△CDE的点D到BC的距离相等,∴,∴,∵DE∥AC,

∴△DBE∽△ABC,

∴S△DBE:S△ABC=1:25,∴S△ABC=100

∴S△ACD=S△ABC-S△BDE-S△CDE=100-4-16=1.

故选C.【题目点拨】考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用△BDE的面积表示出△ABC的面积是解题的关键.4、D【解题分析】根据直角三角形两锐角互余求出,然后求出,再根据旋转的性质对应边的夹角即为旋转角.【题目详解】解:,,,点、、在同一条直线上,,旋转角等于.故选:D.【题目点拨】本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.5、B【分析】将整理成,即可求解.【题目详解】解:∵,∴,

故选:B.【题目点拨】本题考查分式的化简求值,掌握分式的运算法则是解题的关键.6、B【分析】首先连接OB,由OD⊥BC,根据垂径定理,可得∠BOC=2∠DOC,又由OD=1,⊙O的半径为2,易求得∠DOC的度数,然后由勾股定理求得∠BAC的度数.【题目详解】连接OB,∵OD⊥BC,∴∠ODC=90°,∵OC=2,OD=1,∴cos∠COD=,∴∠COD=60°,∵OB=OC,OD⊥BC,∴∠BOC=2∠DOC=120°,∴∠BAC=∠BOC=60°.故选B.【题目点拨】此题考查圆周角定理、垂径定理,解题关键在于利用圆周角定理得出两角之间的关系.7、B【解题分析】根据三视图:俯视图是圆,主视图与左视图是长方形可以确定该几何体是圆柱体,再利用已知数据计算圆柱体的体积.【题目详解】先由三视图确定该几何体是圆柱体,底面直径是4,半径是2,高是1.所以该几何体的体积为π×22×1=24π.故选B.【题目点拨】本题主要考查由三视图确定几何体和求圆柱体的面积,考查学生的空间想象能力.8、C【分析】我们可设正六边形的边长为2,欲求半径、边心距之比,我们画出图形,通过构造直角三角形,解直角三角形即可得出.【题目详解】如右图所示,边长AB=2;又该多边形为正六边形,故∠OBA=60°,在Rt△BOG中,BG=1,OG=,所以AB=2,即半径、边心距之比为.故选:C.【题目点拨】此题主要考查正多边形边长的计算问题,要求学生熟练掌握应用.9、B【分析】依据,,即可得到;依据,即可得出;过作于,依据,根据相似三角形的性质得到;依据,,可得,进而得到.【题目详解】解:∵菱形中,,.∴,,∴,故①正确;∴,又∵,为中点,,∴,即,又∵,∴∵,∴,∴,∴,故②正确;如图,过作于,则,∴,,,∴中,,又∵,∴,故③正确;∵,,,,∴,,∴,∴,故④错误;故选:B.【题目点拨】此题考查相似三角形的判定与性质、菱形的性质、等边三角形的性质的综合运用.解题关键在于掌握判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.10、C【分析】根据二次函数、一次函数图像与系数的关系,对每个选项一一判断即可.【题目详解】A.由一次函数图像可得:a>0,b>0;由二次函数图像可得:a>0,b<0,故A选项不可能.B.由一次函数图像可得:a>0,b<0;由二次函数图像可得:a>0,b>0,故B选项不可能.C.由一次函数图像可得:a<0,b>0;由二次函数图像可得:a<0,b>0,故C选项可能.D.由一次函数图像可得:a>0,b>0;由二次函数图像可得:a<0,b<0,故D选项不可能.故选:C.【题目点拨】本题主要考查一次函数、二次函数图像与系数的关系,根据一次函数、二次函数图像判断系数的正负是解题关键.11、C【解题分析】试题解析:①和的底分别相等,高也相等,所以它们的面积也相等,故正确.②和的底分别相等,高也相等,所以它们的面积也相等,并不是倍的关系.故错误.③由于是的中点,所以和的相似比为,所以它们的面积之比为.故错误.④和的底相等,高和则是的关系,所以它们的面积之比为.故正确.综上所述,符合题意的有①和④.故选C.12、A【解题分析】首先进行移项,然后把二次项系数化为1,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式.【题目详解】∵ax2+bx+c=0,∴ax2+bx=−c,∴x2+x=−,∴x2+x+=−+,∴(x+)2=.故选A.二、填空题(每题4分,共24分)13、(0,0)【解题分析】根据坐标的平移规律解答即可.【题目详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【题目点拨】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14、>【分析】把A、B两点的坐标代入抛物线的解析式,求出的值即得答案.【题目详解】解:把A、B两点的坐标代入抛物线的解析式,得:,,∴>.故答案为:>.【题目点拨】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于基本题型,掌握比较的方法是解答关键.15、2【分析】连接OA、OB,求出∠AOB=得到△ABC是等边三角形,即可得到半径OA=AB=2.【题目详解】连接OA、OB,∵,∴∠AOB=,∵OA=OB,∴△ABC是等边三角形,∴OA=AB=2,故答案为:2.【题目点拨】此题考查圆周角定理,同弧所对的圆周角等于圆心角的一半.16、35°【分析】先利用等腰三角形的性质得∠OAB=∠OBA=55°,再根据三角形内角和定理,计算出∠AOB=70°,然后根据圆周角定理求解.【题目详解】∵OA=OB,∴∠OAB=∠OBA=55°,∴∠AOB=180°﹣55°×2=70°,∴∠ACB=∠AOB=35°.故答案为:35°.【题目点拨】本题主要考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半,是解题的关键.17、1【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简,得出答案.【题目详解】原式=1+1﹣1=1.故答案为:1.【题目点拨】本题主要考查零指数幂的性质以及负整数指数幂的性质,牢记负整数指数幂的计算方法,是解题的关键.18、-1【解题分析】根据两已知点的坐标特征得到它们是抛物线的对称点,而这两个点关于直线x=-1对称,由此可得到抛物线的对称轴.【题目详解】∵点(3,4)和(-5,4)的纵坐标相同,∴点(3,4)和(-5,4)是抛物线的对称点,而这两个点关于直线x=-1对称,∴抛物线的对称轴为直线x=-1.故答案为-1.【题目点拨】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-.三、解答题(共78分)19、(1)当天该水果的销售量为2千克;(2)如果某天销售这种水果获利150元,该天水果的售价为3元.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润每千克利润销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【题目详解】(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+1.当x=23.5时,y=﹣2x+1=2.答:当天该水果的销售量为2千克.(2)根据题意得:(x﹣20)(﹣2x+1)=150,解得:x1=35,x2=3.∵20≤x≤32,∴x=3.答:如果某天销售这种水果获利150元,那么该天水果的售价为3元.【题目点拨】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.20、(1)w=﹣10x2+1300x﹣30000;(2)最大利润是1元,此时玩具的销售单价应定为65元.【分析】(1)利用销售单价每涨1元,就会少售出10件玩具,再结合每件玩具的利润乘以销量=总利润进而求出即可;(2)利用每件玩具的利润乘以销量=总利润得出函数关系式,进而求出最值即可.【题目详解】(1)根据题意得:w=[600﹣10(x﹣40)](x﹣30)=﹣10x2+1300x﹣30000;(2)w=[600﹣10(x﹣40)](x﹣30)=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+1.∵a=﹣10<0,∴对称轴为x=65,∴当x=65时,W最大值=1(元)答:商场销售该品牌玩具获得的最大利润是1元,此时玩具的销售单价应定为65元.【题目点拨】本题考查了二次函数的应用,得出w与x的函数关系式是解题的关键.21、96【分析】如图1,延长FG交BC于H,设CE=x,则E'H'=CE=x,根据轴对称的性质得:D'E'=DC=E'F'=9,表示GH,EH,BE的长,证明△EGH∽△EAB,则,可得x的值,即可求出线段、及FG的长,故可求解.【题目详解】(1)如图1,延长FG交BC于H,设CE=x,则E'H'=CE=x,由轴对称的性质得:D'E'=DC=E'F'=9,∴H'F'=AF=9+x,∵AD=BC=16,∴DF=16−(9+x)=7−x,即C'D'=DF=7−x=F'G',∴FG=7−x,∴GH=9−(7−x)=2+x,EH=16−x−(9+x)=7−2x,∴EH∥AB,∴△EGH∽△EAB,∴,∴,解得x=1或31(舍),、及FG∴AF=9+x=10,EC=1,故AF-EC=9故答案为:9;(2)由(1)得FG=7−x=7-1=6.【题目点拨】本题考查了图形的拼剪,轴对称的性质,矩形、直角三角形、相似三角形等相关知识,积累了将实际问题转化为数学问题经验,渗透了数形结合的思想,体现了数学思想方法在现实问题中的应用价值.22、(1);(2)【解题分析】(1)根据甲盘中的数字,可判断求出概率;(2)列出符合条件的所有可能,然后确定符合条件的可能,求出概率即可.【题目详解】(1)甲转盘共有1,2,3三个数字,其中小于3的有1,2,∴P(转动甲转盘,指针指向的数字小于3)=,故答案为.(2)树状图如下:由树状图知,共有12种等可能情况,其中两个转盘指针指向的数字为奇数的有4种情况,所以两个转盘指针指向的数字均为奇数的概率P==.23、(1)①,4;②;(2),证明见解析.【分析】(1)①根据等边三角形的性质得BA=BC,∠ABC=60°,再根据旋转的性质得∠OBD=∠ABC=60°,于是可确定旋转角的度数为60°;由旋转的性质得BO=BD,加上∠OBD=60°,则可判断△OBD为等边三角形,所以OD=OB=4;②由△BOD为等边三角形得到∠BDO=60°,再利用旋转的性质得CD=AO=3,然后根据勾股定理的逆定理可证明△OCD为直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;(2)根据旋转的性质得∠OBD=∠ABC=90°,BO=BD,CD=AO,则可判断△OBD为等腰直角三角形,则OD=OB,然后根据勾股定理的逆定理,当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°.【题目详解】解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;∵旋转至,∴,,,∴为等边三角形∴,,故答案为:60°;4②在中,,,,∵∴∴为直角三角形,,∴(2)时,,理由如下:∵绕点顺时针旋转后得到,∴,,,∴为等腰直角三角形,∴∵当时,为直角三角形,,∴,即∴当满足时,.【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判断与性质和勾股定理的逆定理.24、(1)见详解;(2)四边形ADCF是矩形;证明见详解.【分析】(1)可证△AFE≌△DBE,得出AF=B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论