版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章大数定律及中心极限定理第1页,课件共39页,创作于2023年2月§5.1大数定律一、大数定律的客观背景二、几个常见的大数定律三、小结第2页,课件共39页,创作于2023年2月大量的随机现象中平均结果的稳定性
一、大数定律的客观背景大量抛掷硬币正面出现频率字母使用频率生产过程中的废品率……
第3页,课件共39页,创作于2023年2月二、几个常见的大数定律切比雪夫Th1:切比雪夫(Chebyshev)定理的特殊情况第4页,课件共39页,创作于2023年2月说明(2)在所给的条件下,当n充分大时,n个随机变量的算术平均值与它们的数学期望有较小的偏差的可能性比较大。可以考虑用算术平均值作为所研究指标值的近似值。(1)此定理也称为切比雪夫大数定理第5页,课件共39页,创作于2023年2月证明切比雪夫大数定律主要的数学工具是切比雪夫不等式.注意切比雪夫不等式第6页,课件共39页,创作于2023年2月证当X为连续型随机变量时,设X的概率密度为f(x),则第7页,课件共39页,创作于2023年2月说明例=3,P{|X-|<}=P{|X-|<3}0.8889=4P{|X-|<}=P{|X-|<4}0.9375第8页,课件共39页,创作于2023年2月例掷一颗骰子1620次,估计“六点”出现的次数X在250~290之间的概率?解由切比雪夫(Chebyshev)不等式估计第9页,课件共39页,创作于2023年2月切比雪夫(Chebyshev)定理证明第10页,课件共39页,创作于2023年2月第11页,课件共39页,创作于2023年2月定义由此得到定理1的另一种叙述:第12页,课件共39页,创作于2023年2月Th1′第13页,课件共39页,创作于2023年2月定理表明事件发生的频率依概率收敛于事件的概率。由实际推断原理,在实际应用中,当试验次数很大时,可以用事件发生的频率来代替事件的概率。Th2:(伯努利大数定理)说明第14页,课件共39页,创作于2023年2月Th3:(辛钦定理)说明伯努利大数定理是辛钦定理的特殊情况。n个随机变量的算术平均值以概率收敛于算术平均值的数学期望。第15页,课件共39页,创作于2023年2月三小结1、切比雪夫(Chebyshev)定理的特殊情况2.伯努利定理3.辛钦定理用算术平均值作为所研究指标值的近似值。事件发生的频率依概率收敛于事件的概率n个随机变量的算术平均值以概率收敛于算术平均值的数学期望。第16页,课件共39页,创作于2023年2月§5.2中心极限定理一、中心极限定理的客观背景二、中心极限定理三、小结第17页,课件共39页,创作于2023年2月
一、中心极限定理的客观背景在实际问题中,常常需要考虑许多随机因素所产生总影响.例如:炮弹射击的落点与目标的偏差,就受着许多随机因素的影响.第18页,课件共39页,创作于2023年2月空气阻力所产生的误差,重要的是这些随机因素的总影响.如瞄准时的误差,炮弹或炮身结构所引起的误差等等.研究独立随机变量之和所特有的规律性问题当n无限增大时,这个和的分布是什么?本节内容第19页,课件共39页,创作于2023年2月观察表明,如果一个量是由大量相互独立的随机因素的影响所造成,而每一个别因素在总影响中所起的作用不大.则这种量一般都服从或近似服从正态分布.自从高斯指出测量误差服从正态分布之后,人们发现,正态分布在自然界中极为常见.第20页,课件共39页,创作于2023年2月由于无穷个随机变量之和可能趋于∞,故不研究n个随机变量之和本身而考虑它的标准化的随机变量的分布函数的极限.在概率论中,习惯于把和的分布收敛于正态分布这一类定理都叫做中心极限定理.第21页,课件共39页,创作于2023年2月1、独立同分布的中心极限定理二、中心极限定理第22页,课件共39页,创作于2023年2月1.在所给的条件下,当n无穷大时,n个具有期望和方差的独立同分布的随机变量之和Yn的分布函数近似服从标准正态分布为极限分布。说明2.独立同分布随机变量序列的中心极限定理,也称列维—林德伯格(Levy-Lindberg)定理.第23页,课件共39页,创作于2023年2月2.李雅普诺夫定理第24页,课件共39页,创作于2023年2月第25页,课件共39页,创作于2023年2月3.棣莫佛-拉普拉斯定理说明第26页,课件共39页,创作于2023年2月例1掷一颗骰子1620次,求“六点”出现的次数X在250~290之间的概率?4.例题解第27页,课件共39页,创作于2023年2月例2一加法器同时收到20个噪声电器Vk(k=1,2,…,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布。记求P{V>105}的近似值解E(Vk)=5,D(Vk)=100/12(k=1,2,…,20).近似服从正态分布N(0,1),第28页,课件共39页,创作于2023年2月第29页,课件共39页,创作于2023年2月例3.对敌人的防御地段进行100次炮击,在每次炮击中,炮弹命中颗数的数学期望为2,均方差为1.5,求在100次炮击中,有180颗到220颗炮弹命中目标的概率.解:设Xk为第k次炮击炮弹命中的颗数(k=1,2,…,100),在100次炮击中炮弹命中的总颗数相互独立地服从同一分布,E(Xk)=2,D(Xk)=1.52(k=1,2,…,100)第30页,课件共39页,创作于2023年2月随机变量近似服从标准正态分布第31页,课件共39页,创作于2023年2月例4对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1名家长、2名家长来参加会议的概率分别为0.05、0.8、0.15.若学校共有400名学生,设各学生参加会议的家长数相互独立,且服从同一分布.求参加会议的家长数X超过450的概率.(2)求有1名家长来参加会议的学生数不多于340的概率.第32页,课件共39页,创作于2023年2月解(1)以Xk(k=1,2,…,400)记第k个学生来参加会议的家长数,其分布律为pk0.050120.80.15XkXk相互独立地服从同一分布第33页,课件共39页,创作于2023年2月随机变量近似服从标准正态分布第34页,课件共39页,创作于2023年2月(2)以Y表示有一名家长来参加会议的学生,则Y~b(400,0.8)第35页,课件共39页,创作于2023年2月三小结1、独立同分布的中心极限定理2.李雅普诺夫定理3.棣莫佛-拉普拉斯定理近似服从标准正态分布N(0,1)。第36页,课件共39页,创作于2023年2月一船舶在某海区航行,已知每遭受一次波浪的冲击,纵摇角大于3的概率为p=1/3,若船舶遭受了90000次波浪冲击,问其中有29500~30500次纵摇角度大于3的概率是多少?解将船舶每遭受一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会议筹备服务合同范例
- 审计结算与合同模板
- 新质生产力与乡村振兴
- 市场与市场营销课件
- 关于外墙清洗合同模板
- 建房合建合同模板
- 买家具货到付款合同范例
- 代理商合作服务合同范例
- 出售风帆公寓合同范例
- 建造经济合同模板
- “山东通”协同办公平台 应用系统接入规范-地方标准
- 技术分红协议合同
- 仪表现场检修风险评估报告
- 市烟草局QC小组运用PDCA循环提高明码标价盒回收率QCC品管圈成果汇报
- 幼儿园角色游戏教案分享带动画
- 15道公务员面试(国考)省级及以下机构陕西省交通局类岗位之三面试问题考察点及参考回答
- 人教版九年级上册 第七单元 燃料及其利用 课题一 燃烧及灭火 说课稿 (讲学稿)
- 数列部分单元教学设计
- 人教版八年级数学上册《幂的运算》专项练习题-附含答案
- 软件工程师生涯人物访谈报告
- 山东省青岛市即墨区2023-2024学年九年级上学期期中英语试卷
评论
0/150
提交评论