版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天津市汉沽区名校数学九年级第一学期期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在中,点,,分别在边,,上,且,,若,则的值为()A. B. C. D.2.将两个圆形纸片(半径都为1)如图重叠水平放置,向该区域随机投掷骰子,则骰子落在重叠区域(阴影部分)的概率大约为()A. B. C. D.3.已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于()A.13 B.11 C.11或1 D.12或14.下列几何体的三视图相同的是(
)A.圆柱
B.球
C.圆锥
D.长方体5.如图,反比例函数y=(x>0)的图象经过Rt△BOC斜边上的中点A,与边BC交于点D,连接AD,则△ADB的面积为()A.12 B.16 C.20 D.246.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是()A. B. C. D.127.如图,在中,是边上一点,延长交的延长线于点,若,则等于()A. B. C. D.8.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172,方差为,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172,此时全班同学身高的方差为,那么与的大小关系是()A. B. C. D.无法判断9.如图,在△ABC中,DE∥BC,BE和CD相交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC的值为()A.1:3 B.1:8 C.1:9 D.1:410.若x=5是方程的一个根,则m的值是()A.-5 B.5 C.10 D.-1011.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是偶数12.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6m二、填空题(每题4分,共24分)13.方程的解是.14.如图,点在双曲线()上,过点作轴,垂足为点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,作直线交轴于点,交轴于点,连接.若,则的值为______.15.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为___________16.抛物线的顶点坐标是___________.17.圆锥的底面半径为6,母线长为10,则圆锥的侧面积为__________.18.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.三、解答题(共78分)19.(8分)如图,将边长为40cm的正方形硬纸板的四个角各剪掉一个同样大小的正方形,剩余部分折成一个无盖的盒子.(纸板的厚度忽略不计).(1)若该无盖盒子的底面积为900cm2,求剪掉的正方形的边长;(2)求折成的无盖盒子的侧面积的最大值.20.(8分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)21.(8分)如图1,抛物线与轴交于点,与轴交于点.(1)求抛物线的表达式;(2)点为抛物线的顶点,在轴上是否存在点,使?若存在,求出点的坐标;若不存在,说明理由;(3)如图2,位于轴右侧且垂直于轴的动直线沿轴正方向从运动到(不含点和点),分别与抛物线、直线以及轴交于点,过点作于点,求面积的最大值.22.(10分)某商场经销一种布鞋,已知这种布鞋的成本价为每双30元.市场调查发现,这种布鞋每天的销售量y(单位:双)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种布鞋每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种布鞋销售单价定价为多少元时,每天的销售利润最大?最大利润是多少元?23.(10分)小丹要测量灯塔市葛西河生态公园里被湖水隔开的两个凉亭和之间的距离,她在处测得凉亭在的南偏东方向,她从处出发向南偏东方向走了米到达处,测得凉亭在的东北方向.(1)求的度数;(2)求两个凉亭和之间的距离(结果保留根号).24.(10分)1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径米是其两腿迈出的步长之差厘米的反比例函数,其图象如图所示.请根据图象中的信息解决下列问题:(1)求与之间的函数表达式;(2)当某人两腿迈出的步长之差为厘米时,他蒙上眼睛走出的大圆圈的半径为______米;(3)若某人蒙上眼睛走出的大圆圈的半径不小于米,则其两腿迈出的步长之差最多是多少厘米?25.(12分)若抛物线(a、b、c是常数,)与直线都经过轴上的一点P,且抛物线L的顶点Q在直线上,则称此直线与该抛物线L具有“一带一路”关系,此时,直线叫做抛物线L的“带线”,抛物线L叫做直线的“路线”.(1)若直线与抛物线具有“一带一路”关系,求m、n的值.(2)若某“路线”L的顶点在反比例函数的图象上,它的“带线”的解析式为,求此路的解析式.26.如图,某校数学兴趣小组为测量该校旗杆及笃志楼的高度,先在操场的处用测角仪测得旗杆顶端的仰角为,此时笃志楼顶端恰好在视线上,再向前走到达处,用该测角仪又测得笃志楼顶端的仰视角为.已知测角仪高度为,点、、在同一水平线上.(1)求旗杆的高度;(2)求笃志楼的高度(精确到).(参考数据:,)
参考答案一、选择题(每题4分,共48分)1、A【分析】根据,得到AC=3EC,则AE=2EC,再根据,得到△ADE∽△EFC,再根据面积之比等于相似比的平方即可求解.【题目详解】∵,∴AB:BD=AC:EC,又∵∴AC=3EC,∴AE=2EC,∵,∴∠AED=∠C,∠ADE=∠B=∠EFC,∴△ADE∽△EFC又AE=2EC∴=(2:1)2=4:1故选A.【题目点拨】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.2、B【解题分析】连接AO1,AO2,O1O2,BO1,推出△AO1O2是等边三角形,求得∠AO1B=120°,得到阴影部分的面积=-,得到空白部分的面积=+,于是得到结论.【题目详解】解:连接AO1,AO2,O1O2,BO1,则O1O2垂直平分AB
∴AO1=AO2=O1O2=BO1=1,
∴△AO1O2是等边三角形,
∴∠AO1O2=60°,AB=2AO1sin60°=
∴∠AO1B=120°,∴阴影部分的面积=2×()=-,
∴空白部分和阴影部分的面积和=2π-(-)=+,
∴骰子落在重叠区域(阴影部分)的概率大约为≈,
故选B.【题目点拨】此题考查了几何概率,扇形的面积,三角形的面积,正确的作出辅助线是解题的关键.3、A【分析】首先从方程x2﹣6x+8=0中,确定第三边的边长为2或4;其次考查2,3,6或4,3,6能否构成三角形,从而求出三角形的周长.【题目详解】解:由方程x2-6x+8=0,解得:x1=2或x2=4,当第三边是2时,2+3<6,不能构成三角形,应舍去;当第三边是4时,三角形的周长为:4+3+6=1.故选:A.【题目点拨】考查了三角形三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,不符合题意的应弃之.4、B【解题分析】试题分析:选项A、圆柱的三视图,如图所示,不合题意;选项B、球的三视图,如图所示,符合题意;选项C、圆锥的三视图,如图所示,不合题意;选项D、长方体的三视图,如图所示,不合题意;.故答案选B.考点:简单几何体的三视图.5、A【解题分析】过A作AE⊥OC于E,设A(a,b),求得B(2a,2b),ab=16,得到S△BCO=2ab=32,于是得到结论.【题目详解】过A作AE⊥OC于E,设A(a,b),∵当A是OB的中点,∴B(2a,2b),∵反比例函数y=(x>0)的图象经过Rt△BOC斜边上的中点A,∴ab=16,∴S△BCO=2ab=32,∵点D在反比例函数数y=(x>0)的图象上,∴S△OCD=16÷2=8,∴S△BOD=32﹣8=24,∴△ADB的面积=S△BOD=12,故选:A.【题目点拨】本题主要考查反比例函数的图象与三角形的综合,掌握反比例函数的比例系数k的几何意义,添加合适的辅助线,是解题的关键.6、C【分析】设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【题目详解】∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b),∵点D,E在反比例函数的图象上,∴=k,∴E(a,
),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-•-•-••(b-)=9,∴k=,故选:C【题目点拨】考核知识点:反比例函数系数k的几何意义.结合图形,分析图形面积关系是关键.7、B【分析】根据平行四边形的性质可得出AB=CD,,得出,再利用相似三角形的性质得出对应线段成比例,即,从而可得解.【题目详解】解:四边形是平行四边形,,,,且,,故选:.【题目点拨】本题考查的知识点有平行四边形的性质,相似三角形的性质,综合运用各知识点能够更好的解决问题.8、B【分析】设该班的人数有n人,除小明外,其他人的身高为x1,x2……xn-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm,然后根据方差公式比较大小即可.【题目详解】解:设该班的人数有n人,除小明外,其他人的身高为x1,x2……xn-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm根据方差公式:∵∴即故选B.【题目点拨】此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.9、C【分析】根据题意,易证△DEF∽△CBF,同理可证△ADE∽△ABC,根据相似三角形面积比是对应边比例的平方即可解答.【题目详解】∵S△EFC=3S△DEF,∴DF:FC=1:3(两个三角形等高,面积之比就是底边之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故选:C.【题目点拨】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形面积比是对应边比例的平方.10、D【分析】先把x=5代入方程得到关于m的方程,然后解此方程即可.【题目详解】解:把x=5代入方程得到25-3×5+m=0,
解得m=-1.
故选:D.【题目点拨】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11、D【解题分析】根据图可知该事件的概率在0.5左右,在一一筛选选项即可解答.【题目详解】根据图可知该事件的概率在0.5左右,(1)A事件概率为,错误.(2)B事件的概率为,错误.(3)C事件概率为,错误.(4)D事件的概率为,正确.故选D.【题目点拨】本题考查概率,能够根据事件的条件得出该事件的概率是解答本题的关键.12、D【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【题目详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴,即,解得:AB=6,故选D.【题目点拨】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.二、填空题(每题4分,共24分)13、【解题分析】解:,.14、【分析】设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【题目详解】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,∴AK=OK=,∴OA=,∵∠AOB+∠AOF=90°,∠CFO+∠AOF=90°,∴∠AOB=∠CFO,又∵∠ABO=∠COF,∴△FOC∽△OBA,∴,∴,∴OB=,AB=,∴A(,),∴k=×=.故答案为:.【题目点拨】本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,反比例函数图象上的点的坐标特征,勾股定理,相似三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15、1.【题目详解】解:∵AB⊥x轴于点B,且S△AOB=2,∴S△AOB=|k|=2,∴k=±1.∵函数在第一象限有图象,∴k=1.故答案为1.【题目点拨】本题考查反比例函数系数k的几何意义.16、(1,﹣4).【解题分析】解:∵原抛物线可化为:y=(x﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为(1,﹣4).17、【分析】圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.【题目详解】圆锥的侧面积=×6×10=60cm1.故答案为.【题目点拨】本题考查圆锥侧面积公式的运用,掌握公式是关键.18、【分析】首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【题目详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,,,四边形ABCD是矩形,,,,,,,设,则,在中,,,,即,,,,≌,,,,,,由折叠的性质可得:,,,,,故答案为.【题目点拨】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.三、解答题(共78分)19、(1)5cm;(1)最大值是800cm1.【分析】(1)设剪掉的正方形的边长为x
cm,则AB=(40-1x)cm,根据盒子的底面积为484cm1,列方程解出即可;(1)设剪掉的正方形的边长为x
cm,盒子的侧面积为y
cm1,侧面积=4个长方形面积;则y=-8x1+160x,配方求最值.【题目详解】(1)设剪掉的正方形的边长为xcm,则(40﹣1x)1=900,即40﹣1x=±30,解得x1=35(不合题意,舍去),x1=5;答:剪掉的正方形边长为5cm;(1)设剪掉的正方形的边长为xcm,盒子的侧面积为ycm1,则y与x的函数关系式为y=4(40﹣1x)x,即y=﹣8x1+160x,y=﹣8(x﹣10)1+800,∵﹣8<0,∴y有最大值,∴当x=10时,y最大=800;答:折成的长方体盒子的侧面积有最大值,这个最大值是800cm1.【题目点拨】本题考查了一元二次方程的应用和二次函数的最值问题,根据几何图形理解如何建立一元二次方程和函数关系式是解题的关键;明确正方形面积=边长×边长,长方形面积=长×宽;理解长方体盒子的底面是哪个长方形;解题时应该注意如何利用配方法求函数的最大值.20、通信塔CD的高度约为15.9cm.【解题分析】过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.【题目详解】过点A作AE⊥CD于E,则四边形ABDE是矩形,设CE=xcm,在Rt△AEC中,∠AEC=90°,∠CAE=30°,所以AE=xcm,在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,DM=cm,在Rt△ABM中,BM=cm,∵AE=BD,∴,解得:x=+3,∴CD=CE+ED=+9≈15.9(cm),答:通信塔CD的高度约为15.9cm.【题目点拨】本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.21、(1);(2)不存在,理由见解析;(3)最大值为.【分析】(1)利用待定系数法求出解析式;(2)设点N的坐标为(0,m),过点M做MH⊥y轴于点H,证得△MHN∽△NOB,利用对应边成比例,得到,方程无实数解,所以假设错误,不存在;(3)△PQE∽△BOC,得,得到,当PE最大时,最大,求得直线的解析式,设点P的坐标为,则E,再求得PE的最大值,从而求得答案.【题目详解】(1)把点A(-2,0)、B(8,0)、C(0,4)分别代入,得:,解得,则该抛物线的解析式为:;(2)不存在∵抛物线经过A(-2,0)、B(8,0),∴抛物线的对称轴为,将代入得:,∴抛物线的顶点坐标为:,假设在轴上存在点,使∠MNB=90,设点N的坐标为(0,m),过顶点M做MH⊥y轴于点H,∴∠MNH+∠ONB=90,∠MNH+∠HMN=90,∴∠HMN=∠ONB,∴△MHN∽△NOB,∴,∵B(8,0),N(0,m),,∴,∴,整理得:,∵,∴方程无实数解,所以假设错误,在轴上不存在点,使∠MNB=90;(3)∵PQ⊥BC,PF⊥OB,∴,∴EF∥OC,∴,∴△PQE∽△BOC,得,∵B(8,0)、C(0,4),∴,,,∴,∴,∴当PE最大时,最大,设直线的解析式为,将B(8,0)、C(0,4)代入得,解得:,∴直线的解析式为,设点P的坐标为,则点E的坐标为,∴,∵,∴当时,有最大值为4,∴最大值为.【题目点拨】本题是二次函数的综合题型,其中涉及到的知识点有:待定系数法求二次函数、一次函数解析式,点坐标,相似三角形的判定与性质和三角形的面积求法,特别注意利用数形结合思想的应用.22、(1)w=﹣x2+90x﹣1800;(2)这种布鞋销售单价定价为45元时,每天的销售利润最大,最大利润是,225元【分析】(1)由题意根据每天的销售利润W=每天的销售量×每件产品的利润,即可列出w与x之间的函数解析式;(2)根据题意对w与x之间的函数解析式进行配方,即可求得答案.【题目详解】解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225;答:这种布鞋销售单价定价为45元时,每天的销售利润最大,最大利润是225元.【题目点拨】本题考查二次函数的应用,根据题意得到每天的销售利润的关系式是解决本题的关键以及利用配方法或公式法求得二次函数的最值问题是常用的解题方法.23、(1)60°;(2)米.【解题分析】(1)根据方位角的概念得出相应角的角度,再利用平行线的性质和三角形内角和进行计算即可求得答案;(2)作CD⊥AB于点D,得到两个直角三角形,再根据三角函数的定义和特殊角的三角函数值可求得AD、BD的长,相加即可求得A、B的距离.【题目详解】解:(1)由题意可得:∠MAB=75°,∠MAC=30°,∠NCB=45°,AM∥CN,∴∠BAC=75°−30°=45°,∠MAC=∠NAC=30°∴∠ACB=30°+45°=75°,∴∠ABC=180°−∠BAC−∠ACB=60°;(2)如图,作CD⊥AB于点D,在Rt△ACD中,AD=CD=AC∙sin45°=300×=150,在Rt△BCD中,BD=CDtan30°=150×=50,∴AB=AD+BD=150+50,答:两个凉亭A,B之间的距离为(150+50)米.【题目点拨】本题考查了解直角三角形的应用,在解决有关方位角的问题时,一般根据题意理清图形中各角的关系,有时所给的方位角不在三角形中,需要通过平行线的性质或互余的角等知识转化为所需要的角,解决第二问的关键是作CD⊥AB构造含特殊角的直角三角形.24、(1);(2);(3)步数之差最多是厘米,【分析】(1)用待定系数法即可求得反比例函数的解析式;(2)即求当时的函数值;(3)先求得当时的函数值,再判断当时的函数值的范围.【题目详解】(1)设反比例函数解析式为,将,代入解析式得:,解得:,反比例函数解析式为;(2)将代入得;(3)反比例函数,在每一象限随增大而减小,当时,,解得:,当时,,步数之差最多是厘米.【题目点拨】本题考查了用待定系数法求反比例函数的解析式,掌握反比例函数图象上点的坐标特征是正确
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《供配电系统》练习题集
- “茅台杯”第二届全国装甑(上甑)摘酒职业技能竞赛理论考试题库(含答案)
- 2022-2023学年黑龙江省哈尔滨重点中学七年级(下)期中英语试卷(含解析)
- 北京市某中学2023-2024学年高一年级上册期中检测数学试题
- 2024-2025学年广东省高三(上)开学数学试卷(含答案)
- 2024年坚果炒货项目资金申请报告代可行性研究报告
- 第1课《祖国啊我亲爱的祖国》教学设计+2023-2024学年统编版语文九年级下册
- 2023年超硬材料资金筹措计划书
- 2024年食品助剂项目资金申请报告代可行性研究报告
- 2023年高沸点溶剂资金筹措计划书
- 期中综合检测(1-4单元)(试题)- 2024-2025学年二年级上册数学人教版
- 2024年消防宣传月知识竞赛考试题库500题(含答案)
- 国开2024年秋《机电控制工程基础》形考任务1答案
- 完整版抖音运营推广方案课件
- 中国邮政社招笔试题库
- 2024年典型事故案例警示教育手册15例
- 高一历史(中外历史纲要上册)期中测试卷及答案
- Humpty儿童跌倒评估量表
- 四边形的认识课件
- IUPAC命名法(系统命名法)
- 统计学中的一些基本概念和重要公式
评论
0/150
提交评论