版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京市建邺中学2022-2023学年高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为,直径为4的球的体积为,则(
)
A. B. C. D.参考答案:A2.下列结论正确的是()A.当x>0且x≠1时,lgx+B.当x时,sinx+的最小值为4C.当x>0时,≥2D.当0<x≤2时,x﹣无最大值参考答案:C【考点】基本不等式在最值问题中的应用.
【专题】不等式的解法及应用.【分析】对于A,考虑0<x<1即可判断;对于B,考虑等号成立的条件,即可判断;对于C,运用基本不等式即可判断;对于D,由函数的单调性,即可得到最大值.【解答】解:对于A,当0<x<1时,lgx<0,不等式不成立;对于B,当xx时,sinx∈(0,1],sinx+的最小值4取不到,由于sinx=2不成立;对于C,当x>0时,≥2=2,当且仅当x=1等号成立;对于D,当0<x≤2时,x﹣递增,当x=2时,取得最大值.综合可得C正确.故选:C.【点评】本题考查基本不等式的运用:求最值,注意满足的条件:一正二定三等,考查运算能力,属于中档题和易错题.3..以下说法中错误的个数是(
)个①一个命题的逆命题为真,它的否命题也一定为真;②在中,“”是“三个角成等差数列”的充要条件.③“”是“”的充分不必要条件.A.1
B.2
C.3D.0参考答案:A4.在平面直角坐标系中,不等式组表示的平面区域面积是()A.3 B.6 C. D.9参考答案:D【考点】二元一次不等式(组)与平面区域.【分析】画出不等式表示的区域为直线y=x+4,y=﹣x及x=1围成的三角形,求这个三角形的面积即可.【解答】解:如图,画出不等式表示的区域为直线y=x+4,y=﹣x及x=1围成的三角形,区域面积为:×3×6=9.故选D.【点评】本题考查了二元一次不等式与一次函数的关系及三角形面积的计算方法,注意运用图形结合可以更直观地得解.5.在等差数列{a}中,已知a=2,a+a=13,则a+a+a等于(
)A.40
B.42
C.43
D.45参考答案:B6.已知函数,求(
)A.
B.5C.4D.3参考答案:B7.直线的倾斜角为(
)A.
B.
C.
D.参考答案:C8.中国古代数学名著《九章算术》中记载:“今有大夫、不更、簪袅、上造、公士凡五人,共猎得五鹿,欲以爵次分之,问各得几何?”意思是:今有大夫、不更、簪袅、上造、公士凡五人,他们猎获五只鹿,欲按其爵级高低依次递减相同的量来分配,问各得多少.若五只鹿共600斤,则不更和上造两人分得的鹿肉斤数为(
)A.200
B.240
C.300
D.340参考答案:B9.直线和直线平行,则实数a的值为A.3
B.-1
C.
D.3或-1参考答案:B10.等差数列,的前项和分别为,,若,则=A.
B.
C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.若不等式对任意的实数恒成立,则实数的取值范围是
选做题(14~15题,考生只能从中选做一题)参考答案:
12.数列1,,,……,的前n项和为
。参考答案:
13.若随机变量,则______.参考答案:10.试题分析:因为,所以;由数学方差的性质,得.考点:二项分布、数学方差的性质.14.口袋内有一些大小相同的红球,白球和黑球,从中任摸一球摸出红球的概率是0.3,摸出黑球的概率是0.5,那么摸出白球的概率是.参考答案:0.2【考点】互斥事件的概率加法公式.【分析】从中任摸一球摸出红球、从中任摸一球摸出黑球、从中任摸一球摸出白球,这三个事件是彼此互斥事件,再根据它们的概率之和等于1,求得摸出白球的概率.【解答】解:从中任摸一球摸出红球、从中任摸一球摸出黑球、从中任摸一球摸出白球,这三个事件是彼此互斥事件,它们的概率之和等于1,故从中任摸一球摸出白球的概率为1﹣0.3﹣0.5=0.2,故答案为:0.2.15.已知点,是函数的图像上任意不同的两点,依据图像可知,线段AB总是位于A,B两点之间函数图像的上方,因此有结论成立,运用类比的思想方法可知,若点,是函数的图像上任意不同的两点,则类似地有_________成立.参考答案:分析:由类比推理的规则得出结论,本题中所用来类比的函数是一个变化率越来越大的函数,而要研究的函数是一个变化率越来越小的函数,其类比方式可知.详解:由题意知,点A、B是函数y=ax(a>1)的图象上任意不同两点,函数是变化率逐渐变大的函数,线段AB总是位于A、B两点之间函数图象的上方,因此有成立;而函数y=sinx(x∈(0,π))其变化率逐渐变小,线段AB总是位于A、B两点之间函数图象的下方,故可类比得到结论.故答案为:.16.若,则与的大小关系是
.参考答案:17.为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下列联表
喜爱打篮球不喜爱打篮球合计男生20525女生101525合计302050则至少有
的把握认为喜爱打篮球与性别有关(请用百分数表示).附0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数的分布列,并求李明在一年内领到驾照的概率.
参考答案:.解:的取值分别为1,2,3,4. ,表明李明第一次参加驾照考试就通过了,故P()=0.6. ,表明李明在第一次考试未通过,第二次通过了,故ξ=3,表明李明在第一、二次考试未通过,第三次通过了,故ξ=4,表明李明第一、二、三次考试都未通过,故∴李明实际参加考试次数ξ的分布列为ξ1234P0.60.280.0960.024.李明在一年内领到驾照的概率为
1-(1-0.6)(1-0.7)(1-0.8)(1-0.9)=0.9976.
略19.(12分)已知数列{an}满足a1=1,an+1=(n∈N+)(1)分别求a2,a3,a4的值.(2)猜想{an}的通项公式an,并用数学归纳法证明.参考答案: 当……………10分时命题成立综合(1)(2)当时命题成立………12分20.(14分)已知为实数,(1)若,求在上最大值和最小值;(2)若在和上都是递增的,求的取值范围。参考答案:解:(1),由得………………3分此时
……4分令得
………………5分当变化时,的变化情况如下表:
+0-0+
0↗极大值↘极小值↗0
………………8分(2)的图象为开口向上且过点的抛物线。…9分在和上都是递增的,当或时,恒成立,
………………11分则故的取值范围为
…………………14分略21.(本小题满分12分)在中,,.(Ⅰ)求的值;(Ⅱ)设的面积,求的长.参考答案:解:(Ⅰ)由,得,
………2分由,得.
………4分所以.………6分(Ⅱ)由得,由(Ⅰ)知,故,
………8分又,故,.……10分所以.
………12分22.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°,AB=AD=2CD,E为PB的中点.(1)证明:CE⊥AB;(2)若AB=PA=2,求四棱锥P﹣ABCD的体积;(3)若∠PDA=60°,求直线CE与平面PAB所成角的正切值.参考答案:【考点】直线与平面所成的角;棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系.【专题】证明题;数形结合;综合法;空间位置关系与距离;空间角.【分析】(1)作出图形,取AB的中点F,并连接EF,CF,根据条件可以证明AB⊥平面EFC,从而可以得出CE⊥AB;(2)根据条件可以求出梯形ABCD的面积,而PA是四棱锥P﹣ABCD的高,从而根据棱锥的体积公式可求出四棱锥P﹣ABCD的体积;(3)容易说明∠CEF为直线CE和平面PAB所成的角,由∠PDA便可得到,而CF=AD,这样在Rt△CEF中便可求出tan∠CEF,即求出直线CE与平面PAB所成角的正切值.【解答】解:(1)如图,取AB的中点F,连接EF,CF,则:EF∥PA,CF∥AD;PA⊥平面ABCD,AB?平面ABCD;∴PA⊥AB;∴EF⊥AB;∵∠BAD=∠ADC=90
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024施工混凝土合同范本
- 2024年中英文对照技术文档制作与审核合同3篇
- 2024年高端住宅销售代理协议版
- 2025年度甜品连锁店品牌授权合作合同范本3篇
- 2024幼儿园幼儿安全与健康管理聘用协议书3篇
- 2024幼儿园教师学生个性发展与教育引导合同3篇
- 2024年电子商务用户隐私保护协议3篇
- 2024年电子产品物流配送合同
- 2025年度冷链仓储与配送服务合同范本3篇
- 2024物流运输合同涉及的责任与义务
- 苏轼的人生经历英文版
- 全新大学英语语法手册教案
- 2022年11月26日四川省泸州市事业单位招聘考试《综合知识》精选真题及答案
- 消化内镜治疗新技术课件
- 小学语文作业分层设计分析
- 读者文章汇总 读者文摘100篇
- 现代文阅读之散文
- 山东省济南市高职单招2022-2023学年医学综合真题及答案
- 配色技术员工作计划工作总结述职报告PPT模板下载
- 挖掘机、装载机检验报告完整
- 小学科学三年级上册期末考试质量分析
评论
0/150
提交评论