版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省郑州市第三十四中学2022年高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.收集一只棉铃虫的产卵数y与温度X的几组数据后发现两个变量有相关关系,并按不同的曲线来拟合y与X之间的回归方程,算出对应相关指数R2如下表:则这组数据模型的回归方程的最好选择应是()拟合曲线直
线指数曲线抛物线二次曲线y与x回归方程=19.8x﹣463.7=e0.27x﹣3.84=0.367x2﹣202=相关指数R20.7460.9960.9020.002A.=19.8x﹣463.7 B.=e0.27x﹣3.84C.=0.367x2﹣202 D.=参考答案:B【考点】BK:线性回归方程.【分析】两个变量y与x的回归模型中,它们的相关指数R2,越接近于1,这个模型的拟合效果越好,在所给的四个选项中0.98是相关指数最大的值,得到结果.【解答】解:两个变量y与x的回归模型中,它们的相关指数R2,越接近于1,这个模型的拟合效果越好,在所给的四个选项中0.996是相关指数最大的值,∴拟合效果最好的模型是指数曲线:=e0.27x﹣3.84.故选:B.【点评】本题考查相关指数,这里不用求相关指数,而是根据所给的相关指数判断模型的拟合效果,这种题目解题的关键是理解相关指数越大拟合效果越好.2.已知实数x、y满足约束条件,则z=2x+4y的最大值为()A.24 B.20 C.16 D.12参考答案:B【考点】简单线性规划.【分析】①画可行域②z为目标函数纵截距四倍③画直线0=2x+4y,平移直线过(0,2)时z有最大值【解答】解:画可行域如图,z为目标函数z=2x+4y,可看成是直线z=2x+4y的纵截距四倍,画直线0=2x+4y,平移直线过A(2,4)点时z有最大值20故选B.【点评】本题考查线性规划问题,难度较小.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.3.双曲线和椭圆有相同的焦点F1,F2,M为两曲线的交点,则|MF1|?|MF2|等于()A.a+m B.b+m C.a﹣m D.b﹣m参考答案:C【考点】椭圆的简单性质;双曲线的简单性质.【分析】利用椭圆、双曲线的定义,即可得出结论.【解答】解:由题意,双曲线和椭圆有相同的焦点F1,F2,M为两曲线的交点不妨设M是第一象限内的点,则|MF1|﹣|MF2|=2,|MF1|+|MF2|=2,∴|MF1|=+,|MF2|=﹣,∴|MF1|?|MF2|=a﹣m.故选:C.4.与是定义在R上的两个可导函数,若、满足,则与满足(
)A.
B.为常函数C.
D.为常函数参考答案:B略5.已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为()A.2 B. C. D.2参考答案:D【考点】双曲线的简单性质.【分析】根据题意,点(﹣2,﹣1)在抛物线的准线上,结合抛物线的性质,可得p=4,进而可得抛物线的焦点坐标,依据题意,可得双曲线的左顶点的坐标,即可得a的值,由点(﹣2,﹣1)在双曲线的渐近线上,可得渐近线方程,进而可得b的值,由双曲线的性质,可得c的值,进而可得答案.【解答】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(﹣2,0),即a=2;点(﹣2,﹣1)在双曲线的渐近线上,则其渐近线方程为y=±x,由双曲线的性质,可得b=1;则c=,则焦距为2c=2故选:D.6.等差数列中,,,则此数列前项和等于(
)A.
B.
C.
D.参考答案:B7.设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是()参考答案:DA.B.C.D.考点:利用导数研究函数的单调性;导数的几何意义.专题:压轴题.分析:本题可以考虑排除法,容易看出选项D不正确,因为D的图象,在整个定义域内,不具有单调性,但y=f(x)和y=f′(x)在整个定义域内具有完全相同的走势,不具有这样的函数.解答:解析:检验易知A、B、C均适合,不存在选项D的图象所对应的函数,在整个定义域内,不具有单调性,但y=f(x)和y=f′(x)在整个定义域内具有完全相同的走势,不具有这样的函数,故选D.点评:考查函数的单调性问题.8.下列函数中,周期为,且在上为减函数的是
(
)A.
B.C.
D.参考答案:A略9.设f(x)是一个三次函数,f′(x)为其导函数,如图所示的是y=xf′(x)的图象的一部分,则f(x)的极大值与极小值分别是() A.f(1)与f(﹣1) B.f(﹣1)与f(1) C.f(﹣2)与f(2) D.f(2)与f(﹣2)参考答案:C【考点】函数的单调性与导数的关系;函数最值的应用. 【分析】当x<0时,f′(x)的符号与xf′(x)的符号相反;当x>0时,f′(x)的符号与xf′(x)的符号相同,由y=xf′(x)的图象得f′(x)的符号;判断出函数的单调性得函数的极值. 【解答】解:由y=xf′(x)的图象知, x∈(﹣∞,﹣2)时,f′(x)>0;x∈(﹣2,2)时,f′(x)≤0;x∈(2,+∞)时,f′(x)>0 ∴当x=﹣2时,f(x)有极大值f(﹣2);当x=2时,f(x)有极小值f(2) 故选项为C 【点评】本题考查识图的能力;利用导数求函数的单调性和极值;.是高考常考内容,需重视. 10.利用斜二测画法画一个水平放置的平面四边形的直观图,得到的直观图是一个边长为1的正方形(如图所示),则原图形的形状是()A. B. C.D.参考答案:A【考点】LD:斜二测法画直观图.【分析】利用斜二测画法的过程把给出的直观图还原回原图形,即找到直观图中正方形的四个顶点在原图形中对应的点,用直线段连结后得到原四边形.【解答】解:还原直观图为原图形如图,故选:A.【点评】本题考查了平面图形直观图的画法,解答的关键是熟记斜二测画法的要点和步骤,从而还原得到原图形.二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)=x2﹣8lnx,若对?x1,x2∈(a,a+1)均满足,则a的取值范围为.参考答案:0≤a≤1【考点】函数的单调性与导数的关系.【分析】由条件推出函数为减函数,先求出导函数,然后将函数f(x)是单调递减函数,转化成f′(x)=2x﹣≤0在(a,a+1)上恒成立,即可求出所求.【解答】解:∵对?x1,x2∈(a,a+1)均满足,∴f(x)在(a,a+1)单调递减函数,∵f(x)=x2﹣8lnx,∴f′(x)=2x﹣∵函数f(x)是单调递减函数,∴f′(x)=2x﹣≤0在(a,a+1)上恒成立∴(0,2]?(a,a+1)∴0≤a≤1,故答案为:0≤a≤1.12.已知向量a=(2,1),b=(-1,k),a·(2a-b)=0,则k=________.参考答案:1213.一个棱锥的三视图如图,最长侧棱(单位:cm)是
cm,体积是
cm3.
参考答案:
,
4
14.840与1764的最大公约数是____
参考答案:15.已知椭圆的方程是,它的两个焦点分别为F1,F2,且|F1F2|=8,弦AB(椭圆上任意两点的线段)过点F1,则△ABF2的周长为__________.参考答案:考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据椭圆方程得椭圆的焦点在x轴上,由焦距|F1F2|=8得c=4,结合b2=25算出.最后根据椭圆的定义,即可算出△ABF2的周长.解答:解:∵椭圆的方程是(a>5),∴椭圆的焦点在x轴上,∵焦距|F1F2|=8=2c,得c=4∴a2=b2+c2=25+42,可得.∵|AB|=|AF1|+|BF1|,由椭圆的定义,得|AF1|+|AF2|=|BF1|+|BF2|=2a=2∴△ABF2的周长为|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=.故答案为:点评:本题给出椭圆的方程,求椭圆经过焦点的弦与右焦点构成的三角形的周长.着重考查了椭圆的定义、标准方程与简单几何性质等知识,属于基础题16.已知函数在定义域内是增函数,则实数的取值范围为______________.参考答案:略17.过抛物线焦点的直线与抛物线交于两点,与抛物线的准线交于点,且,则=_________
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A(﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C;(Ⅱ)当时,求直线l的方程;(Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.参考答案:【考点】直线与圆的位置关系;平面向量数量积的运算;直线的一般式方程.【分析】(Ⅰ)根据已知,容易写出直线l的方程为y=3(x+1).将圆心C(0,3)代入方程易知l过圆心C.(Ⅱ)过A(﹣1,0)的一条动直线l.应当分为斜率存在和不存在两种情况;当直线l与x轴垂直时,进行验证.当直线与x轴不垂直时,设直线l的方程为y=k(x+1),由于弦长,利用垂径定理,则圆心C到弦的距离|CM|=1.从而解得斜率K来得出直线l的方程为.(Ⅲ)同样,当l与x轴垂直时,要对设t=,进行验证.当l的斜率存在时,设直线l的方程为y=k(x+1),代入圆的方程得到一个二次方程.充分利用“两根之和”和“两根之积”去找.再用两根直线方程联立,去找.从而确定t=的代数表达式,再讨论t是否为定值.【解答】解:(Ⅰ)由已知,故kl=3,所以直线l的方程为y=3(x+1).将圆心C(0,3)代入方程易知l过圆心C.(Ⅱ)当直线l与x轴垂直时,易知x=﹣1符合题意;当直线与x轴不垂直时,设直线l的方程为y=k(x+1),由于,所以|CM|=1.由,解得.故直线l的方程为x=﹣1或4x﹣3y+4=0.(Ⅲ)当l与x轴垂直时,易得M(﹣1,3),,又A(﹣1,0)则,,故.即t=﹣5.当l的斜率存在时,设直线l的方程为y=k(x+1),代入圆的方程得(1+k2)x2+(2k2﹣6k)x+k2﹣6k+5=0.则,,即,=.又由得,则.故t=.综上,t的值为定值,且t=﹣5.另解一:连接CA,延长交m于点R,由(Ⅰ)知AR⊥m.又CM⊥l于M,故△ANR∽△AMC.于是有|AM|?|AN|=|AC|?|AR|.由,得|AM|?|AN|=5.故.另解二:连接CA并延长交直线m于点B,连接CM,CN,由(Ⅰ)知AC⊥m,又CM⊥l,所以四点M,C,N,B都在以CN为直径的圆上,由相交弦定理得.19.已知p:?x∈R,不等式恒成立,q:椭圆的焦点在x轴上.若命题p∧q为真命题,求实数m的取值范围.
参考答案:2<m<考点:椭圆的简单性质;复合命题的真假;函数恒成立问题.专题:计算题.分析:通过不等式恒成立求出p中m的范围;椭圆的焦点在x轴上求出m的范围,利用命题p∧q为真命题,求出m的交集即可.解答:解:∵p:?x∈R,不等式恒成立,∴(x﹣)2+,即,解得:;q:椭圆的焦点在x轴上,∴m﹣1>3﹣m>0,解得:2<m<3,由p∧q为真知,p,q皆为真,解得.点评:本题考查不等式恒成立问题,椭圆的简单性质,命题的真假的判断,是综合性比较高的问题,考查转化思想以及计算能力.20.(本小题满分12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗
(吨标准煤)的几组对照数据(1)请画出上表数据的散点图;ks5u(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?参考公式:用最小二乘法求线性回归方程系数公式=,=-。参考答案:解:(1)如下图
(2)=32.5+43+54+64.5=66.5==4.5,==3.5,=+++=86,故线性回归方程为y=0.7x+0.35(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7100+0.35=70.35故耗能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Module2 Unit1 Whats your name(说课稿)-2024-2025学年外研版(一起)英语一年级上册
- 2《吃水不忘挖井人》(说课稿)-2024-2025学年统编版(2024)语文一年级下册
- 15《搭船的鸟》说课稿-2024-2025学年统编版语文三年级上册
- 2023八年级数学上册 第三章 位置与坐标2 平面直角坐标系第3课时 建立适当的平面直角坐标系求点的坐标说课稿 (新版)北师大版
- 15坚持才会有收获(说课稿)-部编版道德与法治二年级下册
- 2023七年级道德与法治上册 第二单元 友谊的天空 第五课 交友的智慧 第2框 网上交友新时空说课稿 新人教版
- 1假期有收获 说课稿-2023-2024学年道德与法治二年级上册 统编版
- 2025外墙纸皮砖合同
- 6的乘法口诀(说课稿)-2024-2025学年人教版数学二年级上册
- Unit 3 Fascinating Parks Discover useful structures 说课稿-2024-2025学年高中英语人教版(2019)选择性必修第一册
- 课题申报书:个体衰老差异视角下社区交往空间特征识别与优化
- 江苏省招标中心有限公司招聘笔试冲刺题2025
- 综采工作面过空巷安全技术措施
- 云南省丽江市2025届高三上学期复习统一检测试题 物理 含解析
- 建材材料合作合同范例
- 2025年集体经济发展计划
- 2024-2025学年人教版八年级上册地理期末测试卷(二)(含答案)
- 双方共同买车合同范例
- 医务从业人员行为规范培训
- 中小学校食品安全管理现状与膳食经费优化方案
- 中医外治法课件
评论
0/150
提交评论